4,094 research outputs found

    Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study

    Get PDF
    Transportation agencies have an opportunity to leverage increasingly-available trajectory datasets to improve their analyses and decision-making processes. However, this data is typically purchased from vendors, which means agencies must understand its potential benefits beforehand in order to properly assess its value relative to the cost of acquisition. While the literature concerned with trajectory data is rich, it is naturally fragmented and focused on technical contributions in niche areas, which makes it difficult for government agencies to assess its value across different transportation domains. To overcome this issue, the current paper explores trajectory data from the perspective of a road transportation agency interested in acquiring trajectories to enhance its analyses. The paper provides a literature review illustrating applications of trajectory data in six areas of road transportation systems analysis: demand estimation, modeling human behavior, designing public transit, traffic performance measurement and prediction, environment and safety. In addition, it visually explores 20 million GPS traces in Maryland, illustrating existing and suggesting new applications of trajectory data

    The Field-Tuned Superconductor-Insulator Transition with and without Current Bias

    Full text link
    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product vz = 1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set of exponents suggests that the field-tuned transitions with and without dc bias currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change

    Convective Term and Transversely Driven Charge-Density Waves

    Full text link
    We derive the convective terms in the damping which determine the structure of the moving charge-density wave (CDW), and study the effect of a current flowing transverse to conducting chains on the CDW dynamics along the chains. In contrast to a recent prediction we find that the effect is orders of magnitude smaller, and that contributions from transverse currents of electron- and hole-like quasiparticles to the force exerted on the CDW along the chains act in the opposite directions. We discuss recent experimental verification of the effect and demonstrate experimentally that geometry effects might mimic the transverse current effect.Comment: RevTeX, 9 pages, 1 figure, accepted for publications in PR

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure
    corecore