587 research outputs found
Velocity dependent interactions and a new sum rule in bcc He
Recent neutron scattering experiments [PRL,{\bf 88},p.195301 (2002)] on solid
He, discovered a new optic-like mode in the bcc phase. This excitation was
predicted by a recently proposed model that describes the correlated atomic
zero-point motion in bcc Helium in terms of dynamic electric dipole moments.
Modulations of the relative phase of these dipoles between different atoms
describes the anomalously soft T(110) phonon and two new optic-like modes,
one of which was recently found in the neutron scattering experiments. In this
work we show that the correlated dipolar interactions can be written as a
velocity dependent interaction. This then results in a modified f-sum rule for
the T(110) phonon, in good agreement with the recent experimental data.Comment: 5 pages, 3 figure
Experimental detection of turbulent thermaldiffusion of aerosols in non-isothermal flows
International audienceWe studied experimentally a new phenomenon of turbulent thermal diffusion of particles which can cause formation of the large-scale aerosol layers in the vicinity of the atmospheric temperature inversions. This phenomenon was detected experimentally in oscillating grids turbulence in air flow. Three measurement techniques were used to study turbulent thermal diffusion in strongly inhomogeneous temperature fields, namely Particle Image Velocimetry to determine the turbulent velocity field, an image processing technique to determine the spatial distribution of aerosols, and an array of thermocouples for the temperature field. Experiments are presented for both, stably and unstably stratified fluid flows, by using both directions of the imposed mean vertical temperature gradient. We demonstrated that even in strongly inhomogeneous temperature fields particles in turbulent fluid flow accumulate at the regions with minimum of mean temperature of surrounding fluids due to the phenomenon of turbulent thermal diffusion
Exchange bias effect in alloys and compounds
The phenomenology of exchange bias effects observed in structurally
single-phase alloys and compounds but composed of a variety of coexisting
magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic,
spin-glass, cluster-glass and disordered magnetic states are reviewed. The
investigations on exchange bias effects are discussed in diverse types of
alloys and compounds where qualitative and quantitative aspects of magnetism
are focused based on macroscopic experimental tools such as magnetization and
magnetoresistance measurements. Here, we focus on improvement of fundamental
issues of the exchange bias effects rather than on their technological
importance
Normal-state conductivity in underdoped La_{2-x}Sr_xCuO_4 thin films: Search for nonlinear effects related to collective stripe motion
We report a detailed study of the electric-field dependence of the
normal-state conductivity in La_{2-x}Sr_xCuO_4 thin films for two
concentrations of doped holes, x=0.01 and 0.06, where formation of diagonal and
vertical charged stripes was recently suggested. In order to elucidate whether
high electric fields are capable of depinning the charged stripes and inducing
their collective motion, we have measured current-voltage characteristics for
various orientations of the electric field with respect to the crystallographic
axes. However, even for the highest possible fields (~1000 V/cm for x=0.01 and
\~300 V/cm for x=0.06) we observed no non-linear-conductivity features except
for those related to the conventional Joule heating of the films. Our analysis
indicates that Joule heating, rather than collective electron motion, may also
be responsible for the non-linear conductivity observed in some other 2D
transition-metal oxides as well. We discuss that a possible reason why moderate
electric fields fail to induce a collective stripe motion in layered oxides is
that fairly flexible and compressible charged stripes can adjust themselves to
the crystal lattice and individual impurities, which makes their pinning much
stronger than in the case of conventional rigid charge-density waves.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.
Hysteresis phenomenon in turbulent convection
Coherent large-scale circulations of turbulent thermal convection in air have
been studied experimentally in a rectangular box heated from below and cooled
from above using Particle Image Velocimetry. The hysteresis phenomenon in
turbulent convection was found by varying the temperature difference between
the bottom and the top walls of the chamber (the Rayleigh number was changed
within the range of ). The hysteresis loop comprises the one-cell
and two-cells flow patterns while the aspect ratio is kept constant (). We found that the change of the sign of the degree of the anisotropy of
turbulence was accompanied by the change of the flow pattern. The developed
theory of coherent structures in turbulent convection (Elperin et al. 2002;
2005) is in agreement with the experimental observations. The observed coherent
structures are superimposed on a small-scale turbulent convection. The
redistribution of the turbulent heat flux plays a crucial role in the formation
of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres
Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research
The possibility of a supersolid state of matter, i.e., a crystalline solid
exhibiting superfluid properties, first appeared in theoretical studies about
forty years ago. After a long period of little interest due to the lack of
experimental evidence, it has attracted strong experimental and theoretical
attention in the last few years since Kim and Chan (Penn State, USA) reported
evidence for nonclassical rotational inertia effects, a typical signature of
superfluidity, in samples of solid 4He. Since this "first observation", other
experimental groups have observed such effects in the response to the rotation
of samples of crystalline helium, and it has become clear that the response of
the solid is extremely sensitive to growth conditions, annealing processes, and
3He impurities. A peak in the specific heat in the same range of temperatures
has been reported as well as anomalies in the elastic behaviour of solid 4He
with a strong resemblance to the phenomena revealed by torsional oscillator
experiments. Very recently, the observation of unusual mass transport in hcp
solid 4He has also been reported, suggesting superflow. From the theoretical
point of view, powerful simulation methods have been used to study solid 4He,
but the interpretation of the data is still rather difficult; dealing with the
question of supersolidity means that one has to face not only the problem of
the coexistence of quantum coherence phenomena and crystalline order, exploring
the realm of spontaneous symmetry breaking and quantum field theory, but also
the problem of the role of disorder, i.e., how defects, such as vacancies,
impurities, dislocations, and grain boundaries, participate in the phase
transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
- …
