11,475 research outputs found
Numerical Exploration of the RI/MOM Scheme Gauge Dependence
The gauge dependence of some fermion bilinear RI/MOM renormalization
constants is studied by comparing data which have been gauge-fixed in two
different realizations of the Landau gauge and in a generic covariant gauge.
The very good agreement between the various sets of results and the theory
indicates that the numerical uncertainty induced by the lattice gauge-fixing
procedure is below the statistical errors of our data sample which is of the
order of (1-1.5)%.Comment: 3 pages, 2 figures, Lattice2002(theoretical
Relaxation time of -reversal chains and other chromosome shuffles
We prove tight bounds on the relaxation time of the so-called -reversal
chain, which was introduced by R. Durrett as a stochastic model for the
evolution of chromosome chains. The process is described as follows. We have
distinct letters on the vertices of the -cycle ( mod
); at each step, a connected subset of the graph is chosen uniformly at
random among all those of length at most , and the current permutation is
shuffled by reversing the order of the letters over that subset. We show that
the relaxation time , defined as the inverse of the spectral gap of
the associated Markov generator, satisfies . Our results can be interpreted as strong evidence for a
conjecture of R. Durrett predicting a similar behavior for the mixing time of
the chain.Comment: Published at http://dx.doi.org/10.1214/105051606000000295 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Finite-volume effects in the evaluation of the K_L - K_S mass difference
The RBC and UKQCD collaborations have recently proposed a procedure for
computing the K_L-K_S mass difference. A necessary ingredient of this procedure
is the calculation of the (non-exponential) finite-volume corrections relating
the results obtained on a finite lattice to the physical values. This requires
a significant extension of the techniques which were used to obtain the
Lellouch-Luscher factor, which contains the finite-volume corrections in the
evaluation of non-leptonic kaon decay amplitudes. We review the status of our
study of this issue and, although a complete proof is still being developed,
suggest the form of these corrections for general volumes and a strategy for
taking the infinite-volume limit. The general result reduces to the known
corrections in the special case when the volume is tuned so that there is a
two-pion state degenerate with the kaon.Comment: Presented at the 31st International Symposium on Lattice Field Theory
(Lattice 2013), July 29 - August 3 2013, Mainz Germany. To be published in
the proceedings PoS(LATTICE 2013) 39
Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD
We demonstrate that the leading and next-to-leading finite-volume effects in
the evaluation of leptonic decay widths of pseudoscalar mesons at
are universal, i.e. they are independent of the structure of the meson. This is
analogous to a similar result for the spectrum but with some fundamental
differences, most notably the presence of infrared divergences in decay
amplitudes. The leading non-universal, structure-dependent terms are of
(compared to the leading non-universal corrections in the
spectrum). We calculate the universal finite-volume effects, which requires an
extension of previously developed techniques to include a dependence on an
external three-momentum (in our case, the momentum of the final state lepton).
The result can be included in the strategy proposed in
Ref.\,\cite{Carrasco:2015xwa} for using lattice simulations to compute the
decay widths at , with the remaining finite-volume effects starting
at order . The methods developed in this paper can be generalised to
other decay processes, most notably to semileptonic decays, and hence open the
possibility of a new era in precision flavour physics
Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects
In Carrasco et al. we have recently proposed a method to calculate
electromagnetic corrections to leptonic decay widths of pseudoscalar mesons.
The method is based on the observation that the infrared divergent
contributions (that appear at intermediate stages of the calculation and that
cancel in physical quantities thanks to the Bloch-Nordsieck mechanism) are
universal, i.e. depend on the charge and the mass of the meson but not on its
internal structure. In this talk we perform a detailed analysis of the
finite-volume effects associated with our method. In particular we show that
also the leading finite-volume effects are universal and perform an
analytical calculation of the finite-volume leptonic decay rate for a
point-like meson
Relaxation times of kinetically constrained spin models with glassy dynamics
We analyze the density and size dependence of the relaxation time for
kinetically constrained spin systems. These have been proposed as models for
strong or fragile glasses and for systems undergoing jamming transitions. For
the one (FA1f) or two (FA2f) spin facilitated Fredrickson-Andersen model at any
density and for the Knight model below the critical density at which
the glass transition occurs, we show that the persistence and the spin-spin
time auto-correlation functions decay exponentially. This excludes the
stretched exponential relaxation which was derived by numerical simulations.
For FA2f in , we also prove a super-Arrhenius scaling of the form
. For FA1f in = we
rigorously prove the power law scalings recently derived in \cite{JMS} while in
we obtain upper and lower bounds consistent with findings therein.
Our results are based on a novel multi-scale approach which allows to analyze
in presence of kinetic constraints and to connect time-scales and
dynamical heterogeneities. The techniques are flexible enough to allow a
variety of constraints and can also be applied to conservative stochastic
lattice gases in presence of kinetic constraints.Comment: 4 page
Constraining Fundamental Physics with Future CMB Experiments
The Planck experiment will soon provide a very accurate measurement of Cosmic
Microwave Background anisotropies. This will let cosmologists determine most of
the cosmological parameters with unprecedented accuracy. Future experiments
will improve and complement the Planck data with better angular resolution and
better polarization sensitivity. This unexplored region of the CMB power
spectrum contains information on many parameters of interest, including
neutrino mass, the number of relativistic particles at recombination, the
primordial Helium abundance and the injection of additional ionizing photons by
dark matter self-annihilation. We review the imprint of each parameter on the
CMB and forecast the constraints achievable by future experiments by performing
a Monte Carlo analysis on synthetic realizations of simulated data. We find
that next generation satellite missions such as CMBPol could provide valuable
constraints with a precision close to that expected in current and near future
laboratory experiments. Finally, we discuss the implications of this
intersection between cosmology and fundamental physics.Comment: 11 pages, 14 figure
The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations
We experimentally investigate quadrature correlations between pump, signal,
and idler fields in an above-threshold optical parametric oscillator. We
observe new quantum correlations among the pump and signal or idler beams, as
well as among the pump and a combined quadrature of signal and idler beams. A
further investigation of unforeseen classical noise observed in this system is
presented, which hinders the observation of the recently predicted tripartite
entanglement. In spite of this noise, current results approach the limit
required to demonstrate three-color entanglement.Comment: 10 pages, 5 figures, submitted to Opt. Expres
Generation of Bright Two-Color Continuous Variable Entanglement
We present the first measurement of squeezed-state entanglement between the
twin beams produced in an Optical Parametric Oscillator (OPO) operating above
threshold. Besides the usual squeezing in the intensity difference between the
twin beams, we have measured squeezing in the sum of phase quadratures. Our
scheme enables us to measure such phase anti-correlations between fields of
different frequencies. In the present measurements, wavelengths differ by ~1
nm. Entanglement is demonstrated according to the Duan et al. criterion [Phys.
Rev. Lett. 84, 2722 (2000)] .
This experiment opens the way for new potential applications such as the
transfer of quantum information between different parts of the electromagnetic
spectrum.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
- …
