1,333 research outputs found
Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models
We analyze the evolution of colour gradients predicted by the hydrodynamical
models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce
fairly well the chemical abundance pattern and the metallicity gradients of
local ETGs. We convert the star formation (SF) and metal content into colours
by means of stellar population synthetic model and investigate the role of
different physical ingredients, as the initial gas distribution and content,
and eps_SF, i.e. the normalization of SF rate. From the comparison with high
redshift data, a full agreement with optical rest-frame observations at z < 1
is found, for models with low eps_SF, whereas some discrepancies emerge at 1 <
z < 2, despite our models reproduce quite well the data scatter at these
redshifts. To reconcile the prediction of these high eps_SF systems with the
shallower colour gradients observed at lower z we suggest intervention of 1-2
dry mergers. We suggest that future studies should explore the impact of wet
galaxy mergings, interactions with environment, dust content and a variation of
the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA
Chemical evolution of the Galactic Center
In recent years, the Galactic Center (GC) region (200 pc in radius) has been
studied in detail with spectroscopic stellar data as well as an estimate of the
ongoing star formation rate. The aims of this paper are to study the chemical
evolution of the GC region by means of a detailed chemical evolution model and
to compare the results with high resolution spectroscopic data in order to
impose constraints on the GC formation history.The chemical evolution model
assumes that the GC region formed by fast infall of gas and then follows the
evolution of alpha-elements and Fe. We test different initial mass functions
(IMFs), efficiencies of star formation and gas infall timescales. To reproduce
the currently observed star formation rate, we assume a late episode of star
formation triggered by gas infall/accretion. We find that, in order to
reproduce the [alpha/Fe] ratios as well as the metallicity distribution
function observed in GC stars, the GC region should have experienced a main
early strong burst of star formation, with a star formation efficiency as high
as 25 Gyr^{-1}, occurring on a timescale in the range 0.1-0.7 Gyr, in agreement
with previous models of the entire bulge. Although the small amount of data
prevents us from drawing firm conclusions, we suggest that the best IMF should
contain more massive stars than expected in the solar vicinity, and the last
episode of star formation, which lasted several hundred million years, should
have been triggered by a modest episode of gas infall/accretion, with a star
formation efficiency similar to that of the previous main star formation
episode. This last episode of star formation produces negligible effects on the
abundance patterns and can be due to accretion of gas induced by the bar. Our
results exclude an important infall event as a trigger for the last starburst.Comment: 10 pages, 8 figures, accepted for publication in MNRA
On Dwarf Galaxies as the Source of Intracluster Gas
Recent observational evidence for steep dwarf galaxy luminosity functions in
several rich clusters has led to speculation that their precursors may be the
source of the majority of gas and metals inferred from intracluster medium
(ICM) x-ray observations. Their deposition into the ICM is presumed to occur
through early supernovae-driven winds, the resultant systems reflecting the
photometric and chemical properties of the low luminosity dwarf spheroidals and
ellipticals we observe locally. We consider this scenario, utilising a
self-consistent model for spheroidal photo-chemical evolution and gas ejection
via galactic superwinds. Insisting that post-wind dwarfs obey the observed
colour-luminosity-metallicity relations, we conclude that the bulk of the ICM
gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at
http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol
473, 1997, in pres
The effects of a Variable IMF on the Chemical Evolution of the Galaxy
In this work we explore the effects of adopting an initial mass function
(IMF) variable in time on the chemical evolution of the Galaxy. In order to do
that we adopt a chemical evolution model which assumes two main infall episodes
for the formation of the Galaxy. We study the effects on such a model of
different IMFs. First, we use a theoretical one based on the statistical
description of the density field arising from random motions in the gas. This
IMF is a function of time as it depends on physical conditions of the site of
star formation. We also investigate the behaviour of the model predictions
using other variable IMFs, parameterized as a function of metallicity. Our
results show that the theoretical IMF when applied to our model depends on time
but such time variation is important only in the early phases of the Galactic
evolution, when the IMF is biased towards massive stars. We also show that the
use of an IMF which is a stronger function of time does not lead to a good
agreement with the observational constraints suggesting that if the IMF varied
this variation should have been small. Our main conclusion is that the G-dwarf
metallicity distribution is best explained by infall with a large timescale and
a constant IMF, since it is possible to find variable IMFs of the kind studied
here, reproducing the G-dwarf metallicity but this worsens the agreement with
other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars
vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds.
(Kluwer, Dordrecht) in pres
Redshift Evolution in the Iron Abundance of the Intracluster Medium
Clusters of galaxies provide a closed box within which one can determine the
chemical evolution of the gaseous baryons with cosmic time. We studied this
metallicity evolution in the hot X-ray emitting baryons through an analysis of
XMM-Newton observations of 29 galaxy clusters in the redshift range 0.3 < z <
1.3. Taken alone, this data set does not show evidence for significant
evolution. However, when we also include a comparable sample of 115 clusters
observed with Chandra (Maughan et al. 2008) and a lower redshift sample of 70
clusters observed with XMM at z < 0.3 (Snowden et al. 2008), there is
definitive evidence for a decrease in the metallicity. This decrease is
approximately a factor of two from z = 0 to z \approx 1, over which we find a
least-squares best-fit line Z(z) / Z_{\odot} = (0.46 \pm 0.05) - (0.38 \pm
0.03)z. The greatest uncertainty in the evolution comes from poorly constrained
metallicities in the highest redshift bin
The influence of nova nucleosynthesis on the chemical evolution of the Galaxy
We adopt up-to-date yields of 7Li, 13C, 15N from classical novae and use a
well tested model for the chemical evolution of the Milky Way in order to
predict the temporal evolution of these elemental species in the solar
neighborhood. In spite of major uncertainties due to our lack of knowledge of
metallicity effects on the final products of explosive nucleosynthesis in nova
outbursts, we find a satisfactory agreement between theoretical predictions and
observations for 7Li and 13C. On the contrary, 15N turns out to be overproduced
by about an order of magnitude.Comment: 8 pages, latex, 3 figures. To appear in "The Chemical Evolution of
the Milky Way: Stars versus Clusters", eds. F. Giovannelli and F. Matteucci
(Kluwer: Dordrecht
Galaxy Evolution, Deep Galaxy Counts and the Near-IR Cosmic Infrared Background
Accurate synthetic models of stellar populations are constructed and used in
evolutionary models of stellar populations in forming galaxies. Following their
formation, the late type galaxies are assumed to follow the Schmidt law for
star formation, while early type galaxies are normalized to the present-day
fundamental plane relations assumed to mimic the metallicity variations along
their luminosity sequence. We then compute predictions of these models for the
observational data at early epochs for various cosmological parameters and . We find good match to the metallicity data from the
damped systems and the evolution of the luminosity density out to
. Likewise, our models provide good fits for low values of
to the deep number counts of galaxies in all bands where data is available;
this is done without assuming existence of extra populations of galaxies at
high . Our models also match the data on the redshift distribution of galaxy
counts in and bands. We compute the predicted mean levels and angular
distribution of the cosmic infrared background produced from the early
evolution of galaxies. The predicted fluxes and fluctuations are still below
the current observational limits, but not by a large factor. Finally, we find
that the recent detection of the diffuse extragalactic light in the visible
bands requires for our models high redshift of galaxy formation, (3-4); otherwise the produced flux of the extragalactic light at optical
bands exceeds the current observational limits.Comment: Accepted to Ap
The nova V1369 Cen -- a short review
We briefly present the spectroscopic evolution of the recent outburst of the
classical nova V1369 Cen, and the presence of a narrow absorption line
identified as due to the resonance of neutral lithium at 6708 \AA. We also
discuss the consequences for the chemical evolution of lithium in the Galaxy.Comment: 8 pages, 5 figures, 2 tables. To appear in the proceedings of the
conference "The Golden Age of Cataclysmic Variables and Related Objects -
III" held in Palermo, Italy, 7-12 September 201
Does the Number Density of Elliptical Galaxies Change at z<1?
We have performed a detailed V/Vmax test for a sample of the Canada-France
Redshift Survey (CFRS) for the purpose of examining whether the comoving number
density of field galaxies changes significantly at redshifts of z<1. Taking
into account the luminosity evolution of galaxies which depends on their
morphological type through different history of star formation, we obtain
\sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were
secured by spectroscopy of either absorption or emission lines for the CFRS
sample. This indicates that a picture of mild evolution of field galaxies
without significant mergers is consistent with the CFRS data. Early-type
galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in
number at z>0.8 due to the selection bias, thereby causing a fictitious
decrease of . We therefore conclude that a reasonable choice of upper
bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive
evolution for field ellipticals in the CFRS sample, which was rejected by
Kauffman, Charlot, & White (1996) without confining the redshift range.
However, about 10% of the CFRS sample consists of galaxies having colors much
bluer than predicted for irregular galaxies, and their \avmax is significantly
larger than 0.5. We discuss this population of extremely blue galaxies in terms
of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter
A High-Resolution Spectrum of the Highly Magnified Bulge G-Dwarf MOA-2006-BLG-099S
We analyze a high-resolution spectrum of a microlensed G-dwarf in the
Galactic bulge, acquired when the star was magnified by a factor of 110. We
measure a spectroscopic temperature, derived from the wings of the Balmer
lines, that is the same as the photometric temperature, derived using the color
determined by standard microlensing techniques. We measure [Fe/H]=0.36 +/-0.18,
which places this star at the upper end of the Bulge giant metallicity
distribution. In particular, this star is more metal-rich than any bulge M
giant with high-resolution abundances. We find that the abundance ratios of
alpha and iron-peak elements are similar to those of Bulge giants with the same
metallicity. For the first time, we measure the abundances of K and Zn for a
star in the Bulge. The [K/Mg] ratio is similar to the value measured in the
halo and the disk, suggesting that K production closely tracks alpha
production. The [Cu/Fe] and [Zn/Fe] ratios support the theory that those
elements are produced in Type II SNe, rather than Type Ia SNe. We also measured
the first C and N abundances in the Bulge that have not been affected by first
dredge-up. The [C/Fe] and [N/Fe] ratios are close to solar, in agreement with
the hypothesis that giants experience only canonical mixing.Comment: 42 pages, 14 figures, submitted to Ap
- …
