1,333 research outputs found

    Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    Full text link
    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings, interactions with environment, dust content and a variation of the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA

    Chemical evolution of the Galactic Center

    Get PDF
    In recent years, the Galactic Center (GC) region (200 pc in radius) has been studied in detail with spectroscopic stellar data as well as an estimate of the ongoing star formation rate. The aims of this paper are to study the chemical evolution of the GC region by means of a detailed chemical evolution model and to compare the results with high resolution spectroscopic data in order to impose constraints on the GC formation history.The chemical evolution model assumes that the GC region formed by fast infall of gas and then follows the evolution of alpha-elements and Fe. We test different initial mass functions (IMFs), efficiencies of star formation and gas infall timescales. To reproduce the currently observed star formation rate, we assume a late episode of star formation triggered by gas infall/accretion. We find that, in order to reproduce the [alpha/Fe] ratios as well as the metallicity distribution function observed in GC stars, the GC region should have experienced a main early strong burst of star formation, with a star formation efficiency as high as 25 Gyr^{-1}, occurring on a timescale in the range 0.1-0.7 Gyr, in agreement with previous models of the entire bulge. Although the small amount of data prevents us from drawing firm conclusions, we suggest that the best IMF should contain more massive stars than expected in the solar vicinity, and the last episode of star formation, which lasted several hundred million years, should have been triggered by a modest episode of gas infall/accretion, with a star formation efficiency similar to that of the previous main star formation episode. This last episode of star formation produces negligible effects on the abundance patterns and can be due to accretion of gas induced by the bar. Our results exclude an important infall event as a trigger for the last starburst.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    On Dwarf Galaxies as the Source of Intracluster Gas

    Get PDF
    Recent observational evidence for steep dwarf galaxy luminosity functions in several rich clusters has led to speculation that their precursors may be the source of the majority of gas and metals inferred from intracluster medium (ICM) x-ray observations. Their deposition into the ICM is presumed to occur through early supernovae-driven winds, the resultant systems reflecting the photometric and chemical properties of the low luminosity dwarf spheroidals and ellipticals we observe locally. We consider this scenario, utilising a self-consistent model for spheroidal photo-chemical evolution and gas ejection via galactic superwinds. Insisting that post-wind dwarfs obey the observed colour-luminosity-metallicity relations, we conclude that the bulk of the ICM gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol 473, 1997, in pres

    The effects of a Variable IMF on the Chemical Evolution of the Galaxy

    Get PDF
    In this work we explore the effects of adopting an initial mass function (IMF) variable in time on the chemical evolution of the Galaxy. In order to do that we adopt a chemical evolution model which assumes two main infall episodes for the formation of the Galaxy. We study the effects on such a model of different IMFs. First, we use a theoretical one based on the statistical description of the density field arising from random motions in the gas. This IMF is a function of time as it depends on physical conditions of the site of star formation. We also investigate the behaviour of the model predictions using other variable IMFs, parameterized as a function of metallicity. Our results show that the theoretical IMF when applied to our model depends on time but such time variation is important only in the early phases of the Galactic evolution, when the IMF is biased towards massive stars. We also show that the use of an IMF which is a stronger function of time does not lead to a good agreement with the observational constraints suggesting that if the IMF varied this variation should have been small. Our main conclusion is that the G-dwarf metallicity distribution is best explained by infall with a large timescale and a constant IMF, since it is possible to find variable IMFs of the kind studied here, reproducing the G-dwarf metallicity but this worsens the agreement with other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds. (Kluwer, Dordrecht) in pres

    Redshift Evolution in the Iron Abundance of the Intracluster Medium

    Full text link
    Clusters of galaxies provide a closed box within which one can determine the chemical evolution of the gaseous baryons with cosmic time. We studied this metallicity evolution in the hot X-ray emitting baryons through an analysis of XMM-Newton observations of 29 galaxy clusters in the redshift range 0.3 < z < 1.3. Taken alone, this data set does not show evidence for significant evolution. However, when we also include a comparable sample of 115 clusters observed with Chandra (Maughan et al. 2008) and a lower redshift sample of 70 clusters observed with XMM at z < 0.3 (Snowden et al. 2008), there is definitive evidence for a decrease in the metallicity. This decrease is approximately a factor of two from z = 0 to z \approx 1, over which we find a least-squares best-fit line Z(z) / Z_{\odot} = (0.46 \pm 0.05) - (0.38 \pm 0.03)z. The greatest uncertainty in the evolution comes from poorly constrained metallicities in the highest redshift bin

    The influence of nova nucleosynthesis on the chemical evolution of the Galaxy

    Get PDF
    We adopt up-to-date yields of 7Li, 13C, 15N from classical novae and use a well tested model for the chemical evolution of the Milky Way in order to predict the temporal evolution of these elemental species in the solar neighborhood. In spite of major uncertainties due to our lack of knowledge of metallicity effects on the final products of explosive nucleosynthesis in nova outbursts, we find a satisfactory agreement between theoretical predictions and observations for 7Li and 13C. On the contrary, 15N turns out to be overproduced by about an order of magnitude.Comment: 8 pages, latex, 3 figures. To appear in "The Chemical Evolution of the Milky Way: Stars versus Clusters", eds. F. Giovannelli and F. Matteucci (Kluwer: Dordrecht

    Galaxy Evolution, Deep Galaxy Counts and the Near-IR Cosmic Infrared Background

    Full text link
    Accurate synthetic models of stellar populations are constructed and used in evolutionary models of stellar populations in forming galaxies. Following their formation, the late type galaxies are assumed to follow the Schmidt law for star formation, while early type galaxies are normalized to the present-day fundamental plane relations assumed to mimic the metallicity variations along their luminosity sequence. We then compute predictions of these models for the observational data at early epochs for various cosmological parameters Ω,ΩΛ\Omega, \Omega_\Lambda and H0H_0. We find good match to the metallicity data from the damped LαL_\alpha systems and the evolution of the luminosity density out to z1z\simeq 1. Likewise, our models provide good fits for low values of Ω\Omega to the deep number counts of galaxies in all bands where data is available; this is done without assuming existence of extra populations of galaxies at high zz. Our models also match the data on the redshift distribution of galaxy counts in BB and KK bands. We compute the predicted mean levels and angular distribution of the cosmic infrared background produced from the early evolution of galaxies. The predicted fluxes and fluctuations are still below the current observational limits, but not by a large factor. Finally, we find that the recent detection of the diffuse extragalactic light in the visible bands requires for our models high redshift of galaxy formation, zfz_f \geq(3-4); otherwise the produced flux of the extragalactic light at optical bands exceeds the current observational limits.Comment: Accepted to Ap

    The nova V1369 Cen -- a short review

    Full text link
    We briefly present the spectroscopic evolution of the recent outburst of the classical nova V1369 Cen, and the presence of a narrow absorption line identified as due to the resonance of neutral lithium at 6708 \AA. We also discuss the consequences for the chemical evolution of lithium in the Galaxy.Comment: 8 pages, 5 figures, 2 tables. To appear in the proceedings of the conference "The Golden Age of Cataclysmic Variables and Related Objects - III" held in Palermo, Italy, 7-12 September 201

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter

    A High-Resolution Spectrum of the Highly Magnified Bulge G-Dwarf MOA-2006-BLG-099S

    Get PDF
    We analyze a high-resolution spectrum of a microlensed G-dwarf in the Galactic bulge, acquired when the star was magnified by a factor of 110. We measure a spectroscopic temperature, derived from the wings of the Balmer lines, that is the same as the photometric temperature, derived using the color determined by standard microlensing techniques. We measure [Fe/H]=0.36 +/-0.18, which places this star at the upper end of the Bulge giant metallicity distribution. In particular, this star is more metal-rich than any bulge M giant with high-resolution abundances. We find that the abundance ratios of alpha and iron-peak elements are similar to those of Bulge giants with the same metallicity. For the first time, we measure the abundances of K and Zn for a star in the Bulge. The [K/Mg] ratio is similar to the value measured in the halo and the disk, suggesting that K production closely tracks alpha production. The [Cu/Fe] and [Zn/Fe] ratios support the theory that those elements are produced in Type II SNe, rather than Type Ia SNe. We also measured the first C and N abundances in the Bulge that have not been affected by first dredge-up. The [C/Fe] and [N/Fe] ratios are close to solar, in agreement with the hypothesis that giants experience only canonical mixing.Comment: 42 pages, 14 figures, submitted to Ap
    corecore