59 research outputs found
Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy
The content of human sweat is studied by high-resolution NMR, and the majority of organic components most often found in sweat of conditionally healthy people are identified. Original and simple tools are designed for sweat sampling from different areas of human body. The minimal surface area needed for sampling is in the range of 50–100 cm2. On all the surface parts of the human body examined in this work, the main constituents forming a sweat metabolic profile are lactate, glycerol, pyruvate, and serine. The only exception is the sole of the foot (planta pedis), where trace amounts of glycerol are found. An attempt is made to explain the presence of specified metabolites and their possible origin
The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses
<p>Abstract</p> <p>Background</p> <p>The changes in storage reserve accumulation during maize (<it>Zea mays </it>L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The <it>Opaque-2 </it>(<it>O2</it>) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the <it>Opaque-7 </it>(<it>O7</it>) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the <it>o2 </it>and <it>o7 </it>mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants.</p> <p>Results</p> <p>We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the <it>o7 </it>mutant, but severe in the <it>o2 </it>and <it>o2o7 </it>backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes.</p> <p>Conclusion</p> <p>Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.</p
Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells
The original publication is available at http:/www.plosone.orgBackground: This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings: In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions: The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening. © 2011 Sharathchandra et al.Publishers' Versio
The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance
Lignin engineering through laccase modification: a promising field for energy plant improvement
Proteomics as a Complementary Tool for Identifying Unintended Side Effects Occurring in Transgenic Maize Seeds As a Result of Genetic Modifications
ChemInform Abstract: NMR-SPEKTROSKOPISCHE UNTERSUCHUNG DER BLDG. VON VINYL-MAGNESIUM-VERBINDUNGEN UND DEREN STEREOSPEZIFISCHE RK.
- …
