140 research outputs found
Effect of physical aging on the low-frequency vibrational density of states of a glassy polymer
The effects of the physical aging on the vibrational density of states (VDOS)
of a polymeric glass is studied. The VDOS of a poly(methyl methacrylate) glass
at low-energy (<15 meV), was determined from inelastic neutron scattering at
low-temperature for two different physical thermodynamical states. One sample
was annealed during a long time at temperature lower than Tg, and another was
quenched from a temperature higher than Tg. It was found that the VDOS around
the boson peak, relatively to the one at higher energy, decreases with the
annealing at lower temperature than Tg, i.e., with the physical aging.Comment: To be published in Europhys. Let
The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems
New Raman and incoherent neutron scattering data at various temperatures and
molecular dynamic simulations in amorphous silica, are compared to obtain the
Raman coupling coefficient and, in particular, its low frequency
limit. This study indicates that in the limit
extrapolates to a non vanishing value, giving important indications on the
characteristics of the vibrational modes in disordered materials; in particular
our results indicate that even in the limit of very long wavelength the local
disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure
Elastic constant dishomogeneity and dependence of the broadening of the dynamical structure factor in disordered systems
We propose an explanation for the quadratic dependence on the momentum ,
of the broadening of the acoustic excitation peak recently found in the study
of the dynamic structure factor of many real and simulated glasses. We ascribe
the observed law to the spatial fluctuations of the local wavelength of
the collective vibrational modes, in turn produced by the dishomegeneity of the
inter-particle elastic constants. This explanation is analitically shown to
hold for 1-dimensional disordered chains and satisfatorily numerically tested
in both 1 and 3 dimensions.Comment: 4 pages, RevTeX, 5 postscript figure
Frequency behavior of Raman coupling coefficient in glasses
Low-frequency Raman coupling coefficient of 11 different glasses is
evaluated. It is found that the coupling coefficient demonstrates a universal
linear frequency behavior near the boson peak maximum and a superlinear
behavior at very low frequencies. The last observation suggests vanishing of
the coupling coefficient when frequency tends to zero. The results are
discussed in terms of the vibration wavefunction that combines features of
localized and extended modes.Comment: 8 pages, 9 figure
Uptake and depuration of gold nanoparticles in Daphnia magna
This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.Peer reviewed: YesNRC publication: Ye
Porous La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3-δ</sub> thin film cathodes for large area micro solid oxide fuel cell power generators
Progressive painless lower limbs weakness in a dialyzed patient: undiagnosed tertiary syphilis: a case report
A evolução das formas de gentrificação: estratégias comerciais locais e o contexto parisiense
ARGON-TITANIUM HOLLOW CATHODE AFTERGLOW
The mechanisms of the energy transfer between metastable and ionic species of the rare gases and metallic atoms are responsible for the laser action in rare gas-metal vapor discharge. Knowledge of the mechanisms of the production and loss of the metallic species in a rare gas plasma is therefore very inportant. The pulsed afterglow technique has already been used to study the excited metallic ion production in He-Cd, He-Zn (1) and He-Pb (2) discharge. In these experiments, the discharge cell containing metal pellets is placed inside an oven to produce the metal vapor at desired pressure. But this technique cannot be used for the metals having a high boiling point. For example a density of 1011 atoms cm-3 is obtained at 210°C for Zinc but at 1300°C for Titanim
- …
