1,596 research outputs found
A submillimeter search for pre- and proto-brown dwarfs in Chamaeleon II
Context. Chamaeleon II molecular cloud is an active star forming region that
offers an excellent opportunity for studying the formation of brown dwarfs in
the southern hemisphere. Aims. Our aims are to identify a population of pre-
and proto- brown dwarfs (5 sigma mass limit threshold of ~0.015 Msun) and
provide information on the formation mechanisms of substellar objects. Methods.
We performed high sensitivity observations at 870 microns using the LABOCA
bolometer at the APEX telescope towards an active star forming region in
Chamaeleon II. The data are complemented with an extensive multiwavelength
catalogue of sources from the optical to the far-infrared to study the nature
of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and
eleven of them show masses in the substellar regime. The most intense objects
in the surveyed field correspond to the submillimeter counterparts of the well
known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible
proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5
microns. Conclusions. Our analysis indicates that most of the spatially
resolved cores are transient, and that the point-like starless cores in the
sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be
pre-brown dwarfs cores gravitationally unstable if they have radii smaller than
220 AU to 907 AU (1.2" to 5" at 178 pc) respectively for different masses. ALMA
observations will be the key to reveal the energetic state of these pre-brown
dwarfs candidates.Comment: 11 pages, 6 figure
A search for pre- and proto-brown dwarfs in the dark cloud Barnard 30 with ALMA
In this work we present ALMA continuum observations at 880 m of 30
sub-mm cores previously identified with APEX/LABOCA at 870m in the Barnard
30 cloud. The main goal is to characterize the youngest and lowest mass
population in the cloud. As a result, we report the detection of five (out of
30) spatially unresolved sources with ALMA, with estimated masses between 0.9
and 67 M. From these five sources, only two show gas emission. The
analysis of multi-wavelength photometry from these two objects, namely B30-LB14
and B30-LB19, is consistent with one Class II- and one Class I low-mass stellar
object, respectively. The gas emission is consistent with a rotating disk in
the case of B30-LB14, and with an oblate rotating envelope with infall
signatures in the case of LB19. The remaining three ALMA detections do not have
infrared counterparts and can be classified as either deeply embedded objects
or as starless cores if B30 members. In the former case, two of them (LB08 and
LB31) show internal luminosity upper limits consistent with Very Low Luminosity
objects, while we do not have enough information for LB10. In the starless core
scenario, and taking into account the estimated masses from ALMA and the
APEX/LABOCA cores, we estimate final masses for the central objects in the
substellar domain, so they could be classified as pre-BD core candidates.Comment: Published in A&
A proto brown dwarf candidate in Taurus
Aims. We search for brown dwarfs at the Class 0/I evolutionary stage, or proto brown dwarfs.
Methods. We present a multi wavelength study, ranging from optical at 0.8 μm to radio wavelengths at 6 cm, of a cool, very faint, and red multiple object, SSTB213 J041757, detected by Spitzer toward the Barnard 213 dark cloud, in Taurus.
Results. The SED of SSTB213 J041757 displays a clear excess at long wavelengths resembling that of a Class I object. The mid-IR source has two possible counterparts, A and B, in the near-IR and optical images, and the 350 μm observations detect clear extended emission, presumably from an envelope around the two sources. The position of A & B in the (Ic− J) versus (J − [3.6]) colour-colour diagram is consistent with them being Galactic sources and not extragalactic contaminants. A proper-motion study confirms this result for A, while it is inconclusive for B. The temperature and mass of the two possible central objects, according to COND evolutionary models, range between 1550−1750 K and 3−4 M_(Jupiter), and 950−1300 K and 1−2 M_(Jupiter), for A and B, respectively. The integrated SED provides bolometric temperatures and luminosities of 280 K and 0.0034 L_⊙, assuming that the emission at wavelengths > 5 μm is associated with component A, and 150 K and 0.0033 L_⊙, assuming that the emission at wavelengths > 5 μm is associated with component B, which would imply the SSTB213 J041757 object has a luminosity well below the luminosity of other very low luminosity objects discovered up to date.
Conclusions. With these characteristics, SSTB213 J041757 seems to be a promising, and perhaps double, proto brown dwarf candidate
First detection of thermal radio jets in a sample of proto-brown dwarf candidates
We observed with the JVLA at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf
candidates in Taurus in a search for thermal radio jets driven by the most
embedded brown dwarfs. We detected for the first time four thermal radio jets
in proto-brown dwarf candidates. We compiled data from UKIDSS, 2MASS, Spitzer,
WISE and Herschel to build the Spectral Energy Distribution (SED) of the
objects in our sample, which are similar to typical Class~I SEDs of Young
Stellar Objects (YSOs). The four proto-brown dwarf candidates driving thermal
radio jets also roughly follow the well-known trend of centimeter luminosity
against bolometric luminosity determined for YSOs, assuming they belong to
Taurus, although they present some excess of radio emission compared to the
known relation for YSOs. Nonetheless, we are able to reproduce the flux
densities of the radio jets modeling the centimeter emission of the thermal
radio jets using the same type of models applied to YSOs, but with
corresponding smaller stellar wind velocities and mass-loss rates, and
exploring different possible geometries of the wind or outflow from the star.
Moreover, we also find that the modeled mass outflow rates for the bolometric
luminosities of our objects agree reasonably well with the trends found between
the mass outflow rates and bolometric luminosities of YSOs, which indicates
that, despite the "excess" centimeter emission, the intrinsic properties of
proto-brown dwarfs are consistent with a continuation of those of very low mass
stars to a lower mass range. Overall, our study favors the formation of brown
dwarfs as a scaled-down version of low-mass stars.Comment: 18 pages, 8 figures, 14 tables, accepted by the Astrophysical Journa
Arctic Oceanography - Oceanography: Atmosphere-Ocean Exchange, Biogeochemistry & Physics
The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent
Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic.
Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online
Spatially Resolved Chemistry in Nearby Galaxies I. The Center of IC 342
We have imaged emission from the millimeter lines of eight molecules--C2H,
C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the
nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with
OVRO. Using these maps we obtain a picture of the chemistry within the nuclear
region on the sizescales of individual GMCs. Bright emission is detected from
all but SO. There are marked differences in morphology for the different
molecules. A principal component analysis is performed to quantify similarities
and differences among the images. This analysis reveals that while all
molecules are to zeroth order correlated, that is, they are all found in dense
molecular clouds, there are three distinct groups of molecules distinguished by
the location of their emission within the nuclear region. N2H+, C18O, HNC and
HCN are widespread and bright, good overall tracers of dense molecular gas. C2H
and C34S, tracers of PDR chemistry, originate exclusively from the central
50-100 pc region, where radiation fields are high. The third group of
molecules, CH3OH and HNCO, correlates well with the expected locations of
bar-induced orbital shocks. The good correlation of HNCO with the established
shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has
been uncertain, is indeed produced by processing of grains. HC3N is observed to
correlate tightly with 3mm continuum emission, demonstrating that the young
starbursts are the sites of the warmest and densest molecular gas. We compare
our HNC images with the HCN images of Downes et al. (1992) to produce the first
high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity
across the nucleus and the correlation of both of these gas tracers with the
star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication
in Ap
Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds
- …
