245 research outputs found
Mass and angular momenta of Kerr anti-de Sitter spacetimes in Einstein-Gauss-Bonnet theory
We compute the mass and angular momenta of rotating anti-de Sitter spacetimes
in Einstein-Gauss-Bonnet theory of gravity using a superpotential derived from
standard Noether identities. The calculation relies on the fact that the
Einstein and Einstein-Gauss-Bonnet vacuum equations are the same when
linearized on maximally symmetric backgrounds and uses the recently discovered
D-dimensional Kerr-anti-de Sitter solutions to Einstein's equations
Thick domain walls around a black hole
We discuss the gravitationally interacting system of a thick domain wall and
a black hole. We numerically solve the scalar field equation in the
Schwarzschild spacetime and obtain a sequence of static axi-symmetric solutions
representing thick domain walls. We find that, for the walls near the horizon,
the Nambu--Goto approximation is no longer valid.Comment: 18 pages, 11 figures, one reference adde
Kerr-Schild ansatz in Einstein-Gauss-Bonnet gravity: An exact vacuum solution in five dimensions
As is well-known, Kerr-Schild metrics linearize the Einstein tensor. We shall
see here that they also simplify the Gauss-Bonnet tensor, which turns out to be
only quadratic in the arbitrary Kerr-Schild function f when the seed metric is
maximally symmetric. This property allows us to give a simple analytical
expression for its trace, when the seed metric is a five dimensional maximally
symmetric spacetime in spheroidal coordinates with arbitrary parameters a and
b. We also write in a (fairly) simple form the full Einstein-Gauss-Bonnet
tensor (with a cosmological term) when the seed metric is flat and the
oblateness parameters are equal, a=b. Armed with these results we give in a
compact form the solution of the trace of the Einstein-Gauss-Bonnet field
equations with a cosmological term and a different than b. We then examine
whether this solution for the trace does solve the remaining field equations.
We find that it does not in general, unless the Gauss-Bonnet coupling is such
that the field equations have a unique maximally symmetric solution.Comment: 10 pages, no figures, references added. Last version for CQ
The hardest X-ray source in the ASCA Large Sky Survey: Discovery of a new type 2 Seyfert
We present results of ASCA deep exposure observations of the hardest X-ray
source discovered in the ASCA Large Sky Survey (LSS) project, designated as AX
J131501+3141. We extract its accurate X-ray spectrum, taking account of the
contamination from a nearby soft source (AX J131502+3142), separated only by
1'. AX J131501+3141 exhibits a large absorption of NH = (6 +4 -2)x 10^22 H/cm^2
with a photon index \Gamma = 1.5 +0.7 -0.6. The 2--10 keV flux was about 5 x
10^-13 erg/s/cm^2 and was time variable by a factor of 30% in 0.5 year. From
the highly absorbed X-ray spectrum and the time variability, as well as the
results of the optical follow-up observations (Akiyama et al. 1998,
astro-ph/9801173), we conclude that AX J131501+3141 is a type 2 Seyfert galaxy.
Discovery of such a low flux and highly absorbed X-ray source could have a
significant impact on the origin of the cosmic X-ray background.Comment: 16 pages, 6 figures, requires AAS Latex macro v4.0, to appear in The
Astrophysical Journal, text and figures also available at
http://www-cr.scphys.kyoto-u.ac.jp/member/sakano/work/paper/index-e.htm
Charged Rotating Kaluza-Klein Black Holes Generated by G2(2) Transformation
Applying the G_{2(2)} generating technique for minimal D=5 supergravity to
the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein
black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons
equations. At infinity, our solution behaves as a four-dimensional flat
spacetime with a compact extra dimension and hence describes a Kaluza-Klein
black hole. In particlar, the extreme solution is non-supersymmetric, which is
contrast to a static case. Our solution has the limits to the asymptotically
flat charged rotating black hole solution and a new charged rotating black
string solution.Comment: 24 page
The scalar perturbation of the higher-dimensional rotating black holes
The massless scalar field in the higher-dimensional Kerr black hole (Myers-
Perry solution with a single rotation axis) has been investigated. It has been
shown that the field equation is separable in arbitrary dimensions. The
quasi-normal modes of the scalar field have been searched in five dimensions
using the continued fraction method. The numerical result shows the evidence
for the stability of the scalar perturbation of the five-dimensional Kerr black
holes. The time scale of the resonant oscillation in the rapidly rotating black
hole, in which case the horizon radius becomes small, is characterized by
(black hole mass)^{1/2}(Planck mass)^{-3/2} rather than the light-crossing time
of the horizon.Comment: 16 pages, 7 figures, revised versio
Conformal weights in the Kerr/CFT correspondence
It has been conjectured that a near-extreme Kerr black hole is described by a
2d CFT. Previous work has shown that CFT operators dual to axisymmetric
gravitational perturbations have integer conformal weights. In this paper, we
study the analogous problem in 5d. We consider the most general near-extreme
vacuum black hole with two rotational symmetries. This includes Myers-Perry
black holes, black rings and Kaluza-Klein black holes. We find that operators
dual to gravitational (or electromagnetic or massless scalar field)
perturbations preserving both rotational symmetries have integer conformal
weights, the same for all black holes considered.Comment: 19 page
G2 Dualities in D=5 Supergravity and Black Strings
Five dimensional minimal supergravity dimensionally reduced on two commuting
Killing directions gives rise to a G2 coset model. The symmetry group of the
coset model can be used to generate new solutions by applying group
transformations on a seed solution. We show that on a general solution the
generators belonging to the Cartan and nilpotent subalgebras of G2 act as
scaling and gauge transformations, respectively. The remaining generators of G2
form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial
charges. We use these generators to generalize the five dimensional Kerr string
in a number of ways. In particular, we construct the spinning electric and
spinning magnetic black strings of five dimensional minimal supergravity. We
analyze physical properties of these black strings and study their
thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures
Small localized black holes in a braneworld: Formulation and numerical method
No realistic black holes localized on a 3-brane in the Randall-Sundrum
infinite braneworld have been found so far. The problem of finding a static
black hole solution is reduced to a boundary value problem. We solve it by
means of a numerical method, and show numerical examples of a localized black
hole whose horizon radius is small compared to the bulk curvature scale. The
sequence of small localized black holes exhibits a smooth transition from a
five-dimensional Schwarzschild black hole, which is a solution in the limit of
small horizon radius. The localized black hole tends to flatten as its horizon
radius increases. However, it becomes difficult to find black hole solutions as
its horizon radius increases.Comment: RevTeX, 13 pages, 6 figures, references corrected, typos corrected;
to appear in Phys.Rev.
Multidimensional cosmological models: cosmological and astrophysical implications and constraints
We investigate four-dimensional effective theories which are obtained by
dimensional reduction of multidimensional cosmological models with factorizable
geometry and consider the interaction between conformal excitations of the
internal space (geometrical moduli excitations) and Abelian gauge fields. It is
assumed that the internal space background can be stabilized by minima of an
effective potential. The conformal excitations over such a background have the
form of massive scalar fields (gravitational excitons) propagating in the
external spacetime. We discuss cosmological and astrophysical implications of
the interaction between gravexcitons and four-dimensional photons as well as
constraints arising on multidimensional models of the type considered in our
paper. In particular, we show that due to the experimental bounds on the
variation of the fine structure constant, gravexcitons should decay before
nucleosynthesis starts. For a successful nucleosynthesis the masses of the
decaying gravexcitons should be m>10^4 GeV. Furthermore, we discuss the
possible contribution of gravexcitons to UHECR. It is shown that, at energies
of about 10^{20}eV, the decay length of gravexcitons with masses m>10^4 GeV is
very small, but that for m <10^2 GeV it becomes much larger than the
Greisen-Zatsepin-Kuzmin cut-off distance. Finally, we investigate the
possibility for gravexciton-photon oscillations in strong magnetic fields of
astrophysical objects. The corresponding estimates indicate that even the high
magnetic field strengths of magnetars are not sufficient for an efficient and
copious production of gravexcitons.Comment: 16 pages, LaTeX2e, minor changes, improved references, to appear in
PR
- …
