6,470 research outputs found
Lifestyle variables do not predict subjective memory performance over and above depression and anxiety
Recommended from our members
CO2 Hydrogenation to Formate and Formic Acid by Bimetallic Palladium-Copper Hydride Clusters.
Mass spectrometric analysis of the anionic products of interaction between bimetallic palladium-copper tetrahydride anions, PdCuH4-, and carbon dioxide, CO2, in a reaction cell shows an efficient generation of the PdCuCO2H4- intermediate and formate/formic acid complexes. Multiple structures of PdCuH4- and PdCuCO2H4- are identified by a synergy between anion photoelectron spectroscopy and quantum chemical calculations. The higher energy PdCuH4- isomer is shown to drive the catalytic hydrogenation of CO2, emphasizing the importance of accounting for higher energy isomers for cluster catalytic activity. This study represents the first example of CO2 hydrogenation by bimetallic hydride clusters
P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes
ATP plays an important role in signal transduction between neuronal and glial circuits and within glial networks. Here we describe currents activated by ATP in astrocytes acutely isolated from cortical brain slices by non-enzymatic mechanical dissociation. Brain slices were prepared from transgenic mice that express enhanced green fluorescent protein under the control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp. Exogenous ATP evoked inward currents in 75 of 81 astrocytes. In the majority (~65%) of cells, ATP-induced responses comprising a fast and delayed component; in the remaining subpopulation of astrocytes, ATP triggered a smoother response with rapid peak and slowly decaying plateau phase. The fast component of the response was sensitive to low concentrations of ATP (with EC50 of ~40 nM). All ATP-induced currents were blocked by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS); they were insensitive to ivermectin. Quantitative real-time PCR demonstrated strong expression of P2X1 and P2X5 receptor subunits and some expression of P2X2 subunit mRNAs. The main properties of the ATP-induced response in cortical astrocytes (high sensitivity to ATP, biphasic kinetics, and sensitivity to PPADS) were very similar to those reported for P2X1/5 heteromeric receptors studied previously in heterologous expression systems
Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways
Principal component analysis (PCA) is a powerful data reductionmethod for
Structural Health Monitoring. However, its computa-tional cost and data memory
footprint pose a significant challengewhen PCA has to run on limited capability
embedded platformsin low-cost IoT gateways. This paper presents a
memory-efficientparallel implementation of the streaming History PCA
algorithm.On our dataset, it achieves 10x compression factor and 59x
memoryreduction with less than 0.15 dB degradation in the
reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over,
the algorithm benefits from parallelization on multiple cores,achieving a
maximum speedup of 4.8x on Samsung ARTIK 710
Electronic structure theory of the hidden order material URuSi
We report a comprehensive electronic structure investigation of the
paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden
order (HO) phases of URuSi. We have performed relativistic
full-potential calculations on the basis of the density functional theory
(DFT), employing different exchange-correlation functionals to treat electron
correlations within the open -shell of uranium. Specifically, we
investigate---through a comparison between calculated and low-temperature
experimental properties---whether the electrons are localized or
delocalized in URuSi. We also performed dynamical mean field theory
calculations (LDA+DMFT) to investigate the temperature evolution of the
quasi-particle states at 100~K and above, unveiling a progressive opening of a
quasi-particle gap at the chemical potential when temperature is reduced. A
detailed comparison of calculated properties with known experimental data
demonstrates that the LSDA and GGA approaches, in which the uranium
electrons are treated as itinerant, provide an excellent explanation of the
available low-temperature experimental data of the PM and LMAF phases. We show
furthermore that due to a materials-specific Fermi surface instability a large,
but partial, Fermi surface gapping of up to 750 K occurs upon antiferromagnetic
symmetry breaking. The occurrence of the HO phase is explained through
dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic
spin-fluctuations. This dynamical symmetry breaking model explains why the
Fermi surface gapping in the HO phase is similar but smaller than that in the
LMAF phase and it also explains why the HO and LMAF phases have the same Fermi
surfaces yet different order parameters. Suitable derived order parameters for
the HO are proposed to be the Fermi surface gap or the dynamic spin-spin
correlation function.Comment: 23 pages, 20 figure
Borehole temperature reconstructions reveal differences in past surface temperature trends for the permafrost in the Laptev Sea region, Russian Arctic
In central Siberia, past temperature changes have been driving permafrost warming in a region with large organic carbon reserves stored in the perennially frozen ground. However, local arctic temperature histories in the ice-rich permafrost areas of the remote Russian Arctic are sparsely known or based on proxy data with potential seasonal biases and underrepresented in circum-Arctic reconstructions. This study employed two inversion schemes (particle swarm optimization and a least-square method) to reconstruct temperature histories for the past 200–300 years in the Laptev Sea region from two permafrost borehole temperature records. These data were evaluated against larger scale reconstructions from the region. Distinct differences between the western Laptev Sea and the Lena Delta sites were recognized, such as a transition to warmer temperatures a century later in the western Laptev Sea as well as a peak in warming 3 decades later. The local permafrost surface temperature history at Sardakh Island in the Lena Delta was reminiscent of the circum-Arctic regional average trends. However, Mamontov Klyk in the western Laptev Sea was consistent to Arctic trends only in the most recent decade and was more similar to northern hemispheric mean trends. Both sites are consistent with a rapid recent warming that is of synoptic scale. Different environmental influences such as synoptic atmospheric circulation and sea ice may be responsible for differences between the sites. The shallow permafrost boreholes provide missing well-resolved short-scale temperature information in the coastal permafrost tundra of the Arctic. As local differences from circum-Arctic reconstructions, such as later warming and higher warming magnitude, were shown to exist in this region, our results provide a basis for local surface temperature record parameterization of climate models, and in particular of permafrost models
Frustrated spin order and stripe fluctuations in FeSe
The charge and spin dynamics of the structurally simplest iron-based
superconductor, FeSe, may hold the key to understanding the physics of high
temperature superconductors in general. Unlike the iron pnictides, FeSe lacks
long range magnetic order in spite of a similar structural transition around
90\,K. Here, we report results of Raman scattering experiments as a function of
temperature and polarization and simulations based on exact diagonalization of
a frustrated spin model. Both experiment and theory find a persistent low
energy peak close to 500cm in symmetry, which softens slightly
around 100\,K, that we assign to spin excitations. By comparing with results
from neutron scattering, this study provides evidence for nearly frustrated
stripe order in FeSe.Comment: 12 pages, 12 figure
- …
