2,700 research outputs found

    Coherently Controlled Nanoscale Molecular Deposition

    Full text link
    Quantum interference effects are shown to provide a means of controlling and enhancing the focusing a collimated neutral molecular beam onto a surface. The nature of the aperiodic pattern formed can be altered by varying laser field characteristics and the system geometry.Comment: 13 pages (inculding 4 figures), LaTeX (Phys. Rev. Lett., 2000, in Press

    Short time evolved wave functions for solving quantum many-body problems

    Get PDF
    The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a trial state with finite overlap with the ground state to infinite imaginary time. In this work, we use a newly discovered fourth order positive factorization scheme which requires knowing both the potential and its gradients. We show that the resultaing fourth order wave function alone, without further iterations, gives an excellent description of strongly interacting quantum systems such as liquid 4He, comparable to the best variational results in the literature.Comment: 5 pages, 3 figures, 1 tabl

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    The short term debt vs. long term debt puzzle: a model for the optimal mix

    Get PDF
    This paper argues that the existing finance literature is inadequate with respect to its coverage of capital structure of small and medium sized enterprises (SMEs). In particular it is argued that the cost of equity (being both conceptually ill defined and empirically non quantifiable) is not applicable to the capital structure decisions for a large proportion of SMEs and the optimal capital structure depends only on the mix of short and long term debt. The paper then presents a model, developed by practitioners for optimising the debt mix and demonstrates its practical application using an Italian firm's debt structure as a case study

    Atom gratings produced by large angle atom beam splitters

    Get PDF
    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is calculated and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure

    A Constrained Path Monte Carlo Method for Fermion Ground States

    Full text link
    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an over-complete basis of Slater determinants. By constraining the determinants according to a trial wave function ψT|\psi_T\rangle, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if ψT|\psi_T\rangle is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16×1616\times 16 and for various electron fillings and interaction strengths. Besides highly accurate estimates of the ground-state energy, we find that the method also yields reliable estimates of other ground-state observables, such as superconducting pairing correlation functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.

    Quantum Monte Carlo calculation of Compton profiles of solid lithium

    Full text link
    Recent high resolution Compton scattering experiments in lithium have shown significant discrepancies with conventional band theoretical results. We present a pseudopotential quantum Monte Carlo study of electron-electron and electron-ion correlation effects on the momentum distribution of lithium. We compute the correlation correction to the valence Compton profiles obtained within Kohn-Sham density functional theory in the local density approximation and determine that electronic correlation does not account for the discrepancy with the experimental results. Our calculations lead do different conclusions than recent GW studies and indicate that other effects (thermal disorder, core-valence separation etc.) must be invoked to explain the discrepancy with experiments.Comment: submitted to Phys. Rev.

    Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals

    Get PDF
    We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density range r_s=100-150. We have tested different types of orbital for use in the approximate wave functions but none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the potential biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1. The diffusion quantum Monte Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role played by exchange and correlation in Wigner crystals. We also study "floating" Wigner crystals and give results for their pair-correlation functions

    Atomic Resonance and Scattering

    Get PDF
    Contains reports on three research projects.U.S. Air Force - Office of Scientific Research (Grant AFOSR-76-2972)National Science Foundation (Grant CHE79-02967)National Science Foundation (Grant PHY79-09743

    Migraine aura: retracting particle-like waves in weakly susceptible cortex

    Get PDF
    Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale
    corecore