212 research outputs found
Hepaticoduodenostomy as a technique for biliary anastomosis in children with choledochal cyst: An experience with 31 cases
Objective The aim of this study was to investigate the efficacy and complications of hepaticoduodenostomy in the treatment of choledochal cyst in children. Summary background data The conventional treatment of choledochal cyst includes Roux-en-Y hepaticojejunostomy for biliary reconstruction. This procedure, however, disrupts normal bowel continuity and requires two anastomoses. We studied the technique of hepaticoduodenostomy as an effective alternative to this technique.Patients and methods A total of 31 children undergoing hepatoduodenostomy for choledochal cyst over a period of 9 years were included in this study.Results The patients operated upon had outcomes similar to those treated by the Roux-en-Y technique in other studies.Conclusion Hepaticoduodenostomy is an effective alternative to the conventional Roux-en-Y anastomotic technique in cases of choledochal cyst in children. Keywords: choledochal cyst, hepaticoduodenostomy, pediatri
CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer
The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk
Festivals and deterioration of aquatic environment: A case study of Idol immersion in Tapi River, India
In the civil society different festivals are celebrated, these are the integral part of human life and many of festivals are religious, seasonal change and culturally important. The present study elucidated environmental impact of Ganesh idol immersion on water quality of Tapi River and for this purpose water samples were collected during different durations (pre immersion, during immersion and post immersion) from selected sampling stations or idol immersion points of Tapi River. The important water quality parameters like pH, temperature, dissolved oxygen, free carbon dioxide, total hardness, total alkalinity, biological oxygen demand, chemical oxygen demand, oil & grease and total calcium were analysed for the study. Result shows that dissolved oxygen was depleted while remaining parameter were increased during the idol immersion and it was concluded that aquatic ecosystem of Tapi river was deteriorated and pollution and nutrient load were increased due to these religious activities. The celebration of festivals and these religious activities can’t stop but pollution can reduce to save the river
Mutant p53 Gains Oncogenic Functions Through a Chromosomal Instability-Induced Cytosolic DNA Response
Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression
Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane
Poly-(γ-l-glutamylglutamine)–paclitaxel (PGG–PTX) is a novel polymer-based formulation of paclitaxel (PTX) in which the PTX is linked to the polymer via ester bonds. PGG–PTX is of interest because it spontaneously forms very small nanoparticles in plasma. In mouse models, PGG–PTX increased tumor exposure to PTX by 7.7-fold relative to that produced by PTX formulated in Cremophor. In this study, the efficacy of PGG–PTX was compared to that of Abraxane, an established nanoparticular formulation of PTX, in three different tumor models.
Efficacy was quantified by delay in tumor growth of NCI H460 human lung cancer, 2008 human ovarian cancer and B16 melanoma xenografts growing in athymic mice following administration of equitoxic doses of PGG–PTX and Abraxane administered on either a single dose or every 7 day schedule. Toxicity was assessed by change in total body weight.
The efficacy and toxicity of PGG–PTX was shown to increase with dose in the H460 model. PGG–PTX was ~1.5-fold less potent than Abraxane. PGG–PTX produced statistically significantly greater inhibition of tumor growth than Abraxane in all three tumor models when mice were given single equitoxic doses of drug. When given every 7 days for 3 doses, PGG–PTX produced greater inhibition of tumor growth while generating much less weight loss in mice bearing H460 tumors.
PGG–PTX has activity that is superior to that of Abraxane in multiple tumor models. PGG–PTX has the potential to out-perform Abraxane in enhancing the delivery of PTX tumors while at the same time further reducing the toxicity of both single dose and weekly treatment regimens
Identification of citrus expressed sequence tags (ESTs) encoding pleiotropic drug resistance (PDR)-like proteins
The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress
Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration
Changing trends in mortality among solid organ transplant recipients hospitalized for COVID‐19 during the course of the pandemic
Mortality among patients hospitalized for COVID-19 has declined over the course of the pandemic. Mortality trends specifically in solid organ transplant recipients (SOTR) are unknown. Using data from a multicenter registry of SOTR hospitalized for COVID-19, we compared 28-day mortality between early 2020 (March 1, 2020-June 19, 2020) and late 2020 (June 20, 2020-December 31, 2020). Multivariable logistic regression was used to assess comorbidity-adjusted mortality. Time period of diagnosis was available for 1435/1616 (88.8%) SOTR and 971/1435 (67.7%) were hospitalized: 571/753 (75.8%) in early 2020 and 402/682 (58.9%) in late 2020 (p < .001). Crude 28-day mortality decreased between the early and late periods (112/571 [19.6%] vs. 55/402 [13.7%]) and remained lower in the late period even after adjusting for baseline comorbidities (aOR 0.67, 95% CI 0.46-0.98, p = .016). Between the early and late periods, the use of corticosteroids (≥6 mg dexamethasone/day) and remdesivir increased (62/571 [10.9%] vs. 243/402 [61.5%], p < .001 and 50/571 [8.8%] vs. 213/402 [52.2%], p < .001, respectively), and the use of hydroxychloroquine and IL-6/IL-6 receptor inhibitor decreased (329/571 [60.0%] vs. 4/492 [1.0%], p < .001 and 73/571 [12.8%] vs. 5/402 [1.2%], p < .001, respectively). Mortality among SOTR hospitalized for COVID-19 declined between early and late 2020, consistent with trends reported in the general population. The mechanism(s) underlying improved survival require further study
3D genomics across the tree of life reveals condensin II as a determinant of architecture type
We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes
- …
