5 research outputs found

    Copper-impregnated on natural material as promising catalysts for the wet hydrogen peroxide catalytic oxidation of Methyl Green

    Get PDF
    Promising catalyst of cooper impregnated on natural material (CT) synthesized via wet impregnation method, in order to enhance the catalytic wet peroxide oxidation during the degradation of organic matter in a batch reactor under mild conditions. Three different percentages of copper metal (2.5, 5 and 7.5 %) incorporated into CT material which are referred as follows 2.5% Cu-CT, 5% Cu-CT and 7.5% Cu-CT were investigated in the oxidation catalytic of methyl green (MG) dye. The chemical composition, the morphology and the structure of raw CT and all prepared samples, were investigated by X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) to get a better understand concerning the catalytic activity behavior of Cu-CT catalyst. Different variable examined the catalytic activity of the samples obtained such as initial concentrations of dye, copper (Cu) loading, temperature and H2O2 effect was investigated to enhance the MG conversion. CWPO experiments showed that 2.5% Cu-CT catalysts have the maximum catalytic activity during the degradation of MG dye. The presence of copper on CT support ameliorates the hydroxyl radicals in the reaction medium after the contact with H2O2 thus enhanced the catalytic conversion of the CT pristine. The optimum conditions showing an important catalytic conversion of MG dye (95 %) at 2.5% of copper loading, 139.10-3 mol.L-1 H2O2, temperature of 40 °C and at pH 6.0 during  30 min as a reaction time. 

    Physical Links: Defining and detecting inter-chain entanglement

    Get PDF
    Fluctuating filaments, from densely-packed biopolymers to defect lines in structured fluids, are prone to become interlaced and form intricate architectures. Understanding the ensuing mechanical and relaxation properties depends critically on being able to capture such entanglement in quantitative terms. So far, this has been an elusive challenge. Here we introduce the first general characterization of non-ephemeral forms of entanglement in linear curves by introducing novel descriptors that extend topological measures of linking from close to open curves. We thus establish the concept of physical links. This general method is applied to diverse contexts: equilibrated ring polymers, mechanically-stretched links and concentrated solutions of linear chains. The abundance, complexity and space distribution of their physical links gives access to a whole new layer of understanding of such systems and open new perspectives for others, such as reconnection events and topological simplification in dissipative fields and defect lines
    corecore