118 research outputs found
Facilitative parenting and children's social, emotional and behavioural adjustment
Facilitative parenting (FP) supports the development of children’s social and emotional competence and effective peer relationships. Previous research has shown that FP discriminates between children bullied by peers from children who are not bullied, according to reports of teachers. This study investigates the association between FP and children’s social, emotional and behavioral problems, over and above the association with dysfunctional parenting (DP). 215 parents of children aged 5–11 years completed questionnaires about parenting and child behavior, and children and teachers completed measures of child bullying victimization. As predicted, FP accounted for variance in teacher reports of children’s bullying victimization as well as parent reports of children’s social and emotional problems and prosocial behavior better than that accounted for by DP. However for children’s reports of peer victimization the whole-scale DP was a better predictor than FP. Contrary to predictions, FP accounted for variance in conduct problems and hyperactivity better than DP. When analyses were replicated substituting subscales of dysfunctional and FP, a sub-set of FP subscales including Warmth, Supports Friendships, Not Conflicting, Child Communicates and Coaches were correlated with low levels of problems on a broad range of children’s adjustment problems. Parent–child conflict accounted for unique variance in children’s peer victimization (teacher report), peer problems, depression, emotional problems, conduct problems and hyperactivity. The potential relevance of FP as a protective factor for children against a wide range of adjustment problems is discussed
Role of Neural NO Synthase (nNOS) Uncoupling in the Dysfunctional Nitrergic Vasorelaxation of Penile Arteries from Insulin-Resistant Obese Zucker Rats
Objective: Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. Methods and Results: Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations i
Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation
Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5′ end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNAGly anticodon stem–loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus–host cell interaction are discussed
Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum
Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation
<p>Abstract</p> <p>Background</p> <p>Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD.</p> <p>Results</p> <p>The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD.</p> <p>Conclusions</p> <p>As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.</p
Resisting the mantle of the monstrous feminine : women's construction and experience of premenstrual embodiment
The female reproductive body is positioned as abject, as other, as site of defciency and disease, the epitome of the ‘monstrous feminine.’ Premenstrual change in emotion, behavior or embodied sensation is positioned as a sign of madness within, necessitating restraint and control on the part of the women experiencing it (Ussher 2006). Breakdown in this control through manifestation of ‘symptoms’ is diagnosed as PMS (Premenstrual Syndrome) or PMDD (Premenstrual Dysphoric Disorder), a pathology deserving of ‘treatment.’ In this chapter, we adopt a feminist material-discursive theoretical framework to examine the role of premenstrual embodiment in relation to women’s adoption of the subject position of monstrous feminine, drawing on interviews we have conducted with women who self-diagnose as ‘PMS sufferers.’ We theorize women’s self-positioning as subjectifcation, wherein women take up cultural discourse associated with idealized femininity and the reproductive body, resulting in self-objectifcation, distress, and self-condemnation. However, women can resist negative cultural constructions of premenstrual embodiment and the subsequent self-policing. We describe the impact of women-centered psychological therapy which increases awareness of embodied change, and leads to greater acceptance of the premenstrual body and greater self-care, which serves to reduce premenstrual distress
Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology
Mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
- …
