1,332 research outputs found
Evaluation of bacteriological diagnosis of smear positive pulmonary tubreculosis under programme conditions in three districts in the context of DOTS implementation in India
Objective: To study the smear and culture positivity rates in pulmonary tuberculosis patients declared as smear positive in
the districts of North Arcot (Tamil Nadu), Raichur (Karnataka) and Wardha (Maharashtra) in India in order to evaluate the
diagnosis of pulmonary tuberculosis at the field level under programme conditions.
Methods: Two specimens of sputum from each of 320 patients in North Arcot, 314 patients in Raichur and 302 patients
from Wardha district, all of whom had been reported as smear-positive at the field level, were examined by smear and culture.
Findings: The proportion of specimens found to be smear-negative was 4.7% in North Arcot and 5.7% in Raichur as against
38.7% in Wardha. The proportions of culture negative specimens were 5.7% and 6.3% respectively in North Arcot and
Raichur, while it was 35.6% at Wardha. The difference in the smear and culture negativity between Wardha and the other two
districts was highly significant.
Conclusions: The study revealed an unacceptably high level of false positives in sputum smear microscopy in the Wardha
district. This could be attributed to the absence of systematic and intensive training in smear examination consequent to the
non-implementation of the DOTS strategy in this district and a high standard of training offered in the RNTCP implemented
districts
The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-bodied Kinematics
There is a major need in the developing world for a low-cost prosthetic knee that enables users to walk with able-bodied kinematics and low energy expenditure. To efficiently design such a knee, the relationship between the inertial properties of a prosthetic leg and joint kinetics and energetics must be determined. In this paper, using inverse dynamics, the theoretical effects of varying the inertial properties of an above-knee prosthesis on the prosthetic knee moment, hip power, and absolute hip work required for walking with ablebodied kinematics were quantified. The effects of independently varying mass and moment of inertia of the prosthesis, as well as independently varying the masses of each prosthesis segment, were also compared. Decreasing prosthesis mass to 25% of physiological leg mass increased peak late-stance knee moment by 43% and decreased peak swing knee moment by 76%. In addition, it reduced peak stance hip power by 26%, average swing hip power by 76%, and absolute hip work by 22%. Decreasing upper leg mass to 25% of its physiological value reduced absolute hip work by just 2%, whereas decreasing lower leg and foot mass reduced work by up to 22%, with foot mass having the greater effect. Results are reported in the form of parametric illustrations that can be utilized by researchers, designers, and prosthetists. The methods and outcomes presented have the potential to improve prosthetic knee component selection, facilitate ablebodied kinematics, and reduce energy expenditure for users of low-cost, passive knees in developing countries, as well as for users of advanced active knees in developed countries.MIT Department of Physics Pappalardo Program (Fellowship)Massachusetts Institute of Technology. Public Service CenterMassachusetts Institute of Technology. Research Support CommitteeNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)MIT Tata Center for Technology and Desig
The Effects of the Inertial Properties of Above-Knee Prostheses on Optimal Stiffness, Damping, and Engagement Parameters of Passive Prosthetic Knees
Our research aims to design low-cost, high-performance, passive prosthetic knees for developing countries. In this study, we determine optimal stiffness, damping, and engagement parameters for a low-cost, passive prosthetic knee that consists of simple mechanical elements and may enable users to walk with the normative kinematics of able-bodied humans. Knee joint power was analyzed to divide gait into energy-based phases and select mechanical components for each phase. The behavior of each component was described with a polynomial function, and the coefficients and polynomial order of each function were optimized to reproduce the knee moments required for normative kinematics of able-bodied humans. Sensitivity of coefficients to prosthesis mass was also investigated. The knee moments required for prosthesis users to walk with able-bodied normative kinematics were accurately reproduced with a mechanical system consisting of a linear spring, two constant-friction dampers, and three clutches (R[superscript 2]=0.90 for a typical prosthetic leg). Alterations in upper leg, lower leg, and foot mass had a large influence on optimal coefficients, changing damping coefficients by up to 180%. Critical results are reported through parametric illustrations that can be used by designers of prostheses to select optimal components for a prosthetic knee based on the inertial properties of the amputee and his or her prosthetic leg
Quantum plasmons with optical-range frequencies in doped few-layer graphene
Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.MIT/Army Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001
Factors related to successful job reintegration of people with a lower limb amputation
Objective: To study demographically, amputation-, and employment-related factors that show a relationship to successful job reintegration of patients after lower limb amputation. Design: Cross-sectional study. Setting: University hospital. Patients: Subjects had an acquired unilateral major amputation of the lower limb at least 2 years before, were aged 18 to 60 years (mean, 46yr), and were living in the Netherlands. All 322 patients were working at the time of amputation and were recruited from orthopedic workshops. Intervention: Questionnaires sent to subjects to self-report (1) demographic and amputation information and (2) job characteristics and readjustment postamputation. Questionnaire sent to rehabilitation specialists to assess physical work load. Main Outcome Measures: Demographically related (age, gender); amputation-related (comorbidity; reason and level; problems with stump, pain, prosthesis use and problems, mobility, rehabilitation); and employment-related (education, physical workload) information about the success of job reintegration. Results: Job reintegration was successful in 79% and unsuccessful in 21% of the amputees. Age at the time of amputation, wearing comfort of the prosthesis, and education level were significant indicators of successful job reintegration. Subjects with physically demanding jobs who changed type of job before and after the amputation more often successfully returned to work than subjects who tried to stay at the same type of job. Conclusions: Older patients with a low education level and problems with the wearing comfort of the prosthesis are a population at risk who require special attention during the rehabilitation process in order to return to work. Lowering the physical workload by changing to another type of work enhances the chance of successful reintegration
Review and analysis of dense linear system solver package for distributed memory machines
A dense linear system solver package recently developed at the University of Texas at Austin for distributed memory machine (e.g. Intel Paragon) has been reviewed and analyzed. The package contains about 45 software routines, some written in FORTRAN, and some in C-language, and forms the basis for parallel/distributed solutions of systems of linear equations encountered in many problems of scientific and engineering nature. The package, being studied by the Computer Applications Branch of the Analysis and Computation Division, may provide a significant computational resource for NASA scientists and engineers in parallel/distributed computing. Since the package is new and not well tested or documented, many of its underlying concepts and implementations were unclear; our task was to review, analyze, and critique the package as a step in the process that will enable scientists and engineers to apply it to the solution of their problems. All routines in the package were reviewed and analyzed. Underlying theory or concepts which exist in the form of published papers or technical reports, or memos, were either obtained from the author, or from the scientific literature; and general algorithms, explanations, examples, and critiques have been provided to explain the workings of these programs. Wherever the things were still unclear, communications were made with the developer (author), either by telephone or by electronic mail, to understand the workings of the routines. Whenever possible, tests were made to verify the concepts and logic employed in their implementations. A detailed report is being separately documented to explain the workings of these routines
In silico evolution of diauxic growth
The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression
Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant
Cathodic protection: introduction and recent developments
Corrosion of metals and alloys, on which the modern world depends completely, fromelectronic components to printed circuit boards, from nuts and bolts to bridges, fromautomobiles to railway parts to boiler tubes and nuclear reactors, is a practical problem oftremendous technological significance. Corrosion leads to colossal financial losses, whichare estimated to be 3-4% of GNP of a nation, not to speak of the loss of human lives,reputation, environment, aesthetics as well as shut-down and production losses. Of thevarious preventive measures like alloying, corrosion inhibitors, protective coatings, paints,design etc. to combat corrosion, only cathodic protection can guarantee 100% protection, ifproperly designed, executed and supplemented by protective coatings.The ABC ofcorrosion, principle of cathodic protection, with special reference to the development ofaluminium based sacrificial anodes like SUPERAL (medium output) and HOPAL (highoutput) as also insoluble anode like Sintered Magnetite Anode (SMA) in the NationalMetallurgical Laboratory in India, have been included in the paper. While the technology forthe sacrificial Al-based anodes has been transferred to two parties in India, SMA developedby NML is found to be the best because of its unique properties and low cost, compared to theconventionally used insoluble anodes. A cathodic protection system has also been designedand developed by NML with SMA, which is auto-controlled and very economical.AML hasalso successfully designed and executed the cathodic protection of the old water main lines(made from bare steel) in Calcutta, using Al-based sacrificial anodes.Merits and demerits ofgalvanic system compared to impressed current system and major research institutesengaged in corrosion area are listed Pertinent references have been cited for access to theoriginal and detailed literature
Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial
Background:
Most people with stroke in India have no access to organised rehabilitation services. The effectiveness of training family members to provide stroke rehabilitation is uncertain. Our primary objective was to determine whether family-led stroke rehabilitation, initiated in hospital and continued at home, would be superior to usual care in a low-resource setting.
Methods:
The Family-led Rehabilitation after Stroke in India (ATTEND) trial was a prospectively randomised open trial with blinded endpoint done across 14 hospitals in India. Patients aged 18 years or older who had had a stroke within the past month, had residual disability and reasonable expectation of survival, and who had an informal family-nominated caregiver were randomly assigned to intervention or usual care by site coordinators using a secure web-based system with minimisation by site and stroke severity. The family members of participants in the intervention group received additional structured rehabilitation training—including information provision, joint goal setting, carer training, and task-specific training—that was started in hospital and continued at home for up to 2 months. The primary outcome was death or dependency at 6 months, defined by scores 3–6 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) as assessed by masked observers. Analyses were by intention to treat. This trial is registered with Clinical Trials Registry-India (CTRI/2013/04/003557), Australian New Zealand Clinical Trials Registry (ACTRN12613000078752), and Universal Trial Number (U1111-1138-6707).
Findings:
Between Jan 13, 2014, and Feb 12, 2016, 1250 patients were randomly assigned to intervention (n=623) or control (n=627) groups. 33 patients were lost to follow-up (14 intervention, 19 control) and five patients withdrew (two intervention, three control). At 6 months, 285 (47%) of 607 patients in the intervention group and 287 (47%) of 605 controls were dead or dependent (odds ratio 0·98, 95% CI 0·78–1·23, p=0·87). 72 (12%) patients in the intervention group and 86 (14%) in the control group died (p=0·27), and we observed no difference in rehospitalisation (89 [14%]patients in the intervention group vs 82 [13%] in the control group; p=0·56). We also found no difference in total non-fatal events (112 events in 82 [13%] intervention patients vs 110 events in 79 [13%] control patients; p=0·80).
Interpretation:
Although task shifting is an attractive solution for health-care sustainability, our results do not support investment in new stroke rehabilitation services that shift tasks to family caregivers, unless new evidence emerges. A future avenue of research should be to investigate the effects of task shifting to health-care assistants or team-based community care.
Funding:
The National Health and Medical Research Council of Australia
- …
