1,176 research outputs found
Investigation of hydrodynamic characteristics of high speed multihull vessels including shallow water fffect
The objective of this paper is to investigate the hydrodynamic characteristics of high speed catamaran and trimaran ships at different speeds and finite depths using Computational Fluid Dynamics (CFD) techniques. Three dimensional Rankine Source Panel Method with non-linear free-surface boundary condition is used to capture free-surface potential flow around ship hull. Wave pattern, wave resistance, sinkage and trim for varying lateral and longitudinal separation of hull with varying water depths are determined and compared with each other to investigate spacing and depth effects on multihull ship. Computed results show a significant increase in total resistance for water of finite depth compared to deep water. A significant increase in sinkage and trim has also been found in the case of shallow water for both vessels.coupled with RANS solver is used to compute propeller open and self propulsion characteristics at different positions of rudder. Verification and validation studies for resistance coefficients have also been carried out using ITTC recommended procedure. The present computational method reveals that CFD results of flow field around ship hull with propeller and rudder effects are prospective and can be successfully applied in maritime industry
Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I-II/A-B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography-high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10-7). Sex stratification indicated that the separation was driven by females (p=2.4×10-7) relative to males (p=4.0×10-4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10-3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin-lysoPA axis, are associated with disease mechanisms and/or prevalence
Analysis of potential flow around two-dimensional body by finite element method
The paper presents a numerical method for analyzing the potential flow around two dimensional body such as single circular cylinder, NACA0012 hydrofoil and double circular cylinders by finite element method. The numerical technique is based upon a general formulation for the Laplace’s equation using Galerkin technique finite element approach. The solution of the systems of algebraic equations is approached by Gaussian elimination scheme. Laplace’s equation is expressed in terms of both steam function and velocity potential formulation. A finite element program is developed in order to analyze the result. The contours of stream and velocity potential function are drawn. The contour of stream function exhibits the characteristics of potential flow and does not intersect each other. The calculated pressure co-efficient shows the pressure decreasing around the forwarded face from the initial total pressure at the stagnation point and reaching a minimum pressure at the top of the cylinder
Conservation laws for self-adjoint first order evolution equations
In this work we consider the problem on group classification and conservation
laws of the general first order evolution equations. We obtain the subclasses
of these general equations which are quasi-self-adjoint and self-adjoint. By
using the recent Ibragimov's Theorem on conservation laws, we establish the
conservation laws of the equations admiting self-adjoint equations. We
illustrate our results applying them to the inviscid Burgers' equation. In
particular an infinite number of new symmetries of these equations are found
and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of
Nonlinear Mathematical Physic
Using Indium-111 labeled radiopharmaceuticals to target the BB2 receptor on human prostate cancer cells [abstract]
Abstract only availableThe BB2 receptor, belonging to the Bombesin receptor family, has been shown to be highly over expressed in a variety of cancer cell lines, including human prostate cancer. Our laboratory have been involved, for over a decade, in synthesizing Bombesin analogues that target the BB2 receptor for the purpose of developing radiopharmaceuticals for diagnostic and/or therapeutic treatment of cancer. Radiopharmaceuticals based on Bombesin are typically composed of a chelator, isotope, linking group and targeting vector [See Bifunctional Conjugate Design [figure below]. Previous studies by our group and others have shown that variations in linking groups affect the retention time of the bifunctional conjugate in prostate cancer (PC-3) cells. Higher retention time allows for more efficacious therapeutic benefits and enhanced diagnostic imaging capabilities. In this study, we seek to determine the pharmacokinetic benefits achieved in altering the linking group using aliphatic and aromatic linking groups. In-vitro analysis of the radiopharmaceuticals studied found that the Bombesin derivative with the aliphatic linking group demonstrated a slightly higher affinity for the BB2 receptor compared to the Bombesin analogs containing aromatic linking groups. In vivo pharmacokinetic and imaging studies were performed using pre-clinical models of prostate cancer. The tumor uptake of the Bombesin derivatives with the aromatic linking groups were found to be significantly higher compared to that of the Bombesin derivative with the aliphatic linking group. In contrast, the aromatic Bombesin analogs also exhibited higher amounts of undesirable accumulation in the kidneys and other non-target tissues. In conclusion, we found that the aliphatic compounds were more appropriate for diagnostic imaging of prostate cancer due to the reduced non-target retention. The Bombesin analogs with aromatic linking groups showed potential for use as therapeutic agents for prostate cancer treatment.National Institutes of Health Molecular Imaging Progra
Targeting the BB2 receptor on human prostate cancer cells using Indium-111 labeled radiopharmaceutical [abstract]
Abstract only availableFaculty Mentor: Dr. Timothy Hoffman, Internal MedicineThe BB2 receptor, belonging to the Bombesin receptor family, has been shown to be highly over expressed in a variety of cancer cell lines, including human prostate cancer. Over expression of the BB2 receptor offers an appealing target for the design of targeted radiopharmaceuticals. The Hoffman laboratory and others have been involved, for over a decade, in synthesizing Bombesin analogues that target the BB2 receptor for the purpose of developing a viable radiopharmaceutical for diagnostic or therapeutic treatment of cancer. Radiopharmaceuticals based on Bombesin analogues are typically composed of a targeting vector, radioisotope, chelator and linking group [See Bifunctional Conjugate Design figure below]. Previous studies have shown that variations in linking groups may affect the retention time of the bifunctional conjugate in prostate cancer (PC-3) cells. Higher retention time allows for more efficacious therapeutic benefits and enhanced diagnostic imaging capabilities. In the work presented, we designed and synthesized a 111In-Bombesin analogue with a phenyl linker group in order to determine if the phenyl linker group would provide higher retention times in prostate cancer. In-vitro analysis of the radiopharmaceutical was performed using PC-3 cells to determine the affinity of the new compound for the BB2 receptor to be 1.09 nM. In-vivo studies of the radiopharmaceutical were also conducted by injection of the radiopharmaceutical into CF-1 (“normal”) mice, as well as SCID (Severe Combined Immunodeficient) mice bearing 2-3 week old PC-3 tumors. Experimental results on SCID mice revealed uptakes of 6.36, 3.34, 2.42 and 1.69 % Injected Dose of radiopharmaceutical per gram of tumor tissue at 0.25, 1, 4 and 24 hours, respectively. Imaging using Micro-SPECT (Single-Photon Emission Computed Tomography) was performed to track the dispersion of the radiopharmaceutical throughout the mouse model and confirmed the targeted uptake of the radiopharmaceutical
Computation of flow field around ship hull including self propulsion characteristics at varying rudder positions
Flow field around different modern benchmark ship hull with self propulsion characteristics at varying longitudinal positions of rudder is computed using Computation Fluid Dynamics (CFD) technique. Numerical study is performed around bare hull first to determine free surface wave elevation and resistance components. Zonal approach is applied to incorporate ‘potential flow solver’ in the region outside the boundary layer & wake, ‘boundary layer solver’ in thin boundary layer region near the hull and ‘Navier Stokes solver’ in the wake region successively. Lifting Line method coupled with RANS solver is used to compute propeller open and self propulsion characteristics at different positions of rudder. Verification and validation studies for resistance coefficients have also been carried out using ITTC recommended procedure. The present computational method reveals that CFD results of flow field around ship hull with propeller and rudder effects are prospective and can be successfully applied in maritime industry
Computation of hydrodynamic characteristics of ships using CFD
This paper investigates various hydrodynamic characteristics of two conventional ships namely Wigley hull and Series 60 ship by commercial CFD software named Shipflow. Zonal approach is applied to incorporate ‘potential flow solver’in the region outside the boundary layer and wake,‘boundary layer solver’in thin boundary layer region near the hull and ‘Navier Stokes solver’in the wake region successively. Finally free-surface wave pattern, wave elevation, pressure coefficient on hull, boundary layer streamline and different resistance components at different speeds are computed and validated by comparing with experimental results
Evaluation of SLAM algorithms for Search and Rescue applications
This research investigates three SLAM algorithms on a low-cost mobile robot and finds the algorithms’ performance through a set of experiments including different types of ground surfaces
Angelica archengelica extract induced perturbation of rat skin and tight junctional protein (ZO-1) of HaCaT cells
"n&nbsp; Background and purpose of the study: Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. "n&nbsp;Methods: Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. "n&nbsp;Results: The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma concentration of repaglinide from transdermal formulation was maintained higher and for longer time as compared to oral administration of repaglinide. "n&nbsp;Major conclusion: Results suggest the overwhelming influence of Angelica archengelica in enhancing the percutaneous permeation of repaglinide to be mediated through perturbation of skin lipids and tight junction protein (ZO-1)
- …
