329 research outputs found
Proton radiation effect on InAs avalanche photodiodes
With increasing interest over the past decade in space-related remote sensing and communications using near-infrared (NIR) wavelengths, there is a need for radiation studies on NIR avalanche photodiodes (APDs), due to the high radiation environment in space. In this work, we present an experimental study of proton radiation effects on performance parameters of InAs APDs, whose sensitivity extends from visible light to ∼3.5 μm. Three irradiation energies (10.0, 31.4, and 58.8 MeV) and four fluences (109 to 1011 p/cm2) were used. At the harshest irradiation condition (10.0 MeV energy and 1011 p/cm2 fluence) the APDs' avalanche gain and leakage current showed a measurable degradation. However, the responsivity of the APDs was unaffected under all conditions tested. The data reported in this article is available from the figshare digital repository (DOI: https://dx.doi.org/10.15131/shef.data.4560562)
Fractionation of lead in soil by isotopic dilution and sequential extraction
‘Reactivity’ or ‘lability’ of lead is difficult to measure using traditional methods. We investigated the use of isotopic dilution with 204Pb to determine metal reactivity in four soils historically contaminated with contrasting sources of Pb, including (i) petrol-derived Pb, (ii) Pb/Zn minespoil, (iii) long-term sewage sludge application and (iv) 19th century urban waste disposal; total soil Pb concentrations ranged from 217 to 13 600 mg kg–1. A post-spike equilibration period of 3 days and suspension in 5.0 × 10–4 M ethylenediaminetetraacetic acid provided reasonably robust conditions for measuring isotopically exchangeable Pb. However, in acidic organic soils a dilute Ca(NO3)2 electrolyte may be preferable to avoid mobilisation of ‘non-labile’ Pb. Results showed that the reactive pool of soil Pb can be a large proportion of the total soil lead content but varies with the original Pb source. A comparison of isotopic exchangeability with the results of a sequential extraction procedure showed that (isotopically) ‘non-labile’ Pb may be broadly equated with ‘residual’ Pb in organic soils. However, in mineral soils the ‘carbonate’ and ‘oxide-bound’ Pb fractions included non-labile forms of Pb. The individual isotopic signatures of labile and non-labile Pb pools suggested that, despite prolonged contact with soil, differences between the lability of the original contaminant and the native soil Pb may remain
Signaling via interleukin-4, receptor alpha chain is required for successful vaccination against schistosomiasis in BALB/c mice
Radiation-attenuated (RA) schistosome larvae are potent stimulators of innate immune responses at the skin site of exposure (pinna) that are likely to be important factors in the development of Th1-mediated protective immunity. In addition to causing an influx of neutrophils, macrophages, and dendritic cells (DCs) into the dermis, RA larvae induced a cascade of chemokine and cytokine secretion following in vitro culture of pinna biopsy samples. While macrophage inflammatory protein 1 and interleukin-1 (IL-1) were produced transiently within the first few days, the Th1-promoting cytokines IL-12 and IL-18 were secreted at high levels until at least day 14. Assay of C3H/HeJ mice confirmed that IL-12 secretion was not due to lipopolysaccharide contaminants binding Toll-like receptor 4. Significantly, IL-12 p40 secretion was sustained in pinnae from vaccinated mice but not in those from nonprotected infected mice. In contrast, IL-10 was produced from both vaccinated and infected mice. This cytokine regulates IL-12-associated dermal inflammation, since in vaccinated IL-10/ mice, pinna thickness was greatly increased concurrent with elevated levels of IL-12 p40. A significant number of IL-12 p40 cells were detected as emigrants from in vitro-cultured pinnae, and most were within a population of rare large granular cells that were Ia, consistent with their being antigen-presenting cells. Labeling of IL-12 cells for CD11c, CD205, CD8, CD11b, and F4/80 indicated that the majority were myeloid DCs, although a proportion were CD11c F4/80, suggesting that macrophages were an additional source of IL-12 in the skin
A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings
A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling
Interleukin-4 plays a critical role in the regulation of immune responses and has been detected at high levels in the tumour microenvironment of cancer patients, where concentrations correlate with the grade of malignancy. In prostate cancer, interleukin-4 has been associated with activation of the androgen receptor, increased proliferation and activation of survival pathways such as Akt and NF-κB. However, its role in therapy resistance has not yet been determined. Here we investigate the influence of interleukin-4 on primary epithelial cells from prostate cancer patients. Our data demonstrate an increase in the clonogenic potential of these cells when cultured in the presence of interleukin-4. In addition, a Phospho-Kinase Array revealed that in contrast to previously published work, signal transducer and activator of transcription6 (STAT6) is the only signalling molecule activated after interleukin-4 treatment. Using the STAT6-specific inhibitor AS1517499 we could confirm the role of STAT6 in increasing colony-forming frequency. However, clonogenic recovery assays revealed that interleukin-4 does not rescue the effects of either irradiation or docetaxel treatment. We therefore propose that although the interleukin-4/STAT6 axis does not appear to be involved in therapy resistance, it does play a crucial role in the colony-forming abilities of the basal cell population in prostate cancer. IL-4 may therefore contribute to disease relapse by providing a niche that is favourable for the clonogenic growth of prostate cancer stem cells
Investigating Silicon as a Candidate for Plant Synthetic Biology
The physicochemical properties of silicon are closely related to carbon. Certain species of plants accumulate high amount of silicon, however, their physiological role and molecular mechanism of sequestration and distribution in plant tissues are poorly understood. The bonding potential of silicon is analogous to carbon and silicon is a key element propelling nanotechnology and digital revolution. Recent discoveries of silicon in Mars and the Moon along with metabolic engineering of enzymes that can incorporate and cleave silicon from organic compounds have consolidated the idea of silicon-based synthetic cellular lifeforms. Bibliometric analysis was used to evaluate the trend of research in plant synthetic biology
The immunology and genetics of resistance of sheep to Teladorsagia circumcincta
Teladorsagia circumcincta is one of the most economically important gastrointestinal nematode parasites of sheep in cool temperate regions, to which sheep show genetically-varying resistance to infection. This is a very common parasite and viable sheep production requires the extensive use of anthelmintic drugs. However, the emergence of drug-resistant parasites has stimulated the search for alternative control strategies to curb production losses. Lambs become infected soon after weaning and begin to control parasite burden within 8-10 weeks of continual infection. This control is an acquired characteristic mediated by the development of parasite-specific antibodies. This paper describes the immunology associated with resistance and susceptibility, focussing on differential T cell activation that regulates the production of specific effector mechanisms. It continues by summarizing the methods used to identify genes that could be exploited as molecular markers of selection for resistance. In particular it focusses on the link between understanding the molecular immunology of infection and the identification of candidate genes for selection
Assessment of nutritional status in children with kidney diseases-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce
In children with kidney diseases, an assessment of the child’s growth and nutritional status is important to guide the dietary prescription. No single metric can comprehensively describe the nutrition status; therefore, a series of indices and tools are required for evaluation. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. Herein, we present CPRs for nutritional assessment, including measurement of anthropometric and biochemical parameters and evaluation of dietary intake. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Audit and research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT
- …
