4,251 research outputs found
Proteomics reveals that a high-fat diet induces rapid changes in hypothalamic proteins related to neuronal damage and inflammation
Peer reviewedPublisher PD
Optimal processor assignment for pipeline computations
The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered
Graph Kernels
We present a unified framework to study graph kernels, special cases of which include the random
walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004;
Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time
complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3).
We find a spectral decomposition approach even more efficient when computing entire kernel matrices.
For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3)
time per iteration, where d is the size of the label set. By extending the necessary linear algebra to
Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels,
and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2)
time per iteration in all cases. Experiments on graphs from bioinformatics and other application
domains show that these techniques can speed up computation of the kernel by an order of magnitude
or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when
specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to
R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment
kernel of Fröhlich et al. (2006) yet provably positive semi-definite
Lower levels of damaged protein biomarkers in the plasma of overweight type 2 diabetic men following supplementation with a standardised bilberry extract
Peer reviewedPublisher PD
Exercises for improving quick perception grades I, II, III.
Thesis (Ed.M.)--Boston University
N.B.: Page 242 is misnumbered. No content is missing from thesis
On the Validity of the 0-1 Test for Chaos
In this paper, we present a theoretical justification of the 0-1 test for
chaos. In particular, we show that with probability one, the test yields 0 for
periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics
- …
