1,835 research outputs found
Post-learning Arousal Enhances Veridical Memory And Reduces False Memory In The Deese-Roediger-McDermott Paradigm
The Deese-Roediger-McDermott (DRM) paradigm examines false memory by introducing words associated with a non-presented ‘critical lure’ as memoranda, which typically causes the lures to be remembered as frequently as studied words. Our prior work has shown enhanced veridical memory and reduced misinformation effects when arousal is induced after learning (i.e., during memory consolidation). These effects have not been examined in the DRM task, or with signal detection analysis, which can elucidate the mechanisms underlying memory alterations. Thus, 130 subjects studied and then immediately recalled six DRM lists, one after another, and then watched a 3-min arousing (n = 61) or neutral (n = 69) video. Recognition tested 70 min later showed that arousal induced after learning led to better delayed discrimination of studied words from (a) critical lures, and (b) other non-presented ‘weak associates.’ Furthermore, arousal reduced liberal response bias (i.e., the tendency toward accepting dubious information) for studied words relative to all foils, including critical lures and ‘weak associates.’ Thus, arousal induced after learning effectively increased the distinction between signal and noise by enhancing access to verbatim information and reducing endorsement of dubious information. These findings provide important insights into the cognitive mechanisms by which arousal modulates early memory consolidation processes
The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery
Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings
Technique of elbow bending small jacketed transfer lines Patent
Elbow forming in jacketed pipes while maintaining separation between core shape and jacket pipe
Epoxy/ graphene nanocomposites – processing and properties: a review
Graphene has recently attracted significant academic and industrial interest because of its excellent performance in mechanical, electrical and thermal applications. Graphene can significantly improve physical properties of epoxy at extremely small loading when incorporated appropriately. Herein, the structure, preparation and properties of epoxy/graphene nanocomposites are reviewed in general, along with detailed examples drawn from the key scientific literature. The modification of graphene and the utilization of these materials in the fabrication of nanocomposites with different processing methods have been explored. This review has been focused on the processing methods and mechanical, electrical, thermal, and fire retardant properties of the nanocomposites. The synergic effects of graphene and other fillers in epoxy matrix have been summarised as well
A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions
By carrying out a systematic expansion of Feynman integrals in the lattice
spacing, we show that the axial anomaly in the U(1) lattice gauge theory with
Wilson fermions, as determined in one-loop order from an irrelevant lattice
operator in the Ward identity, must necessarily be identical to that computed
from the dimensionally regulated continuum Feynman integrals for the triangle
diagrams.Comment: 1 figure, LaTeX, 18 page
An exploratory aerodynamic and structural investigation of all-flexible parawings
Aerodynamic and structural aspects of all-flexible parawing
Detection of Asynchronous Message Passing Errors Using Static Analysis
Concurrent programming is hard and prone to subtle errors. In this paper we present a static analysis that is able to detect some commonly occurring kinds of message passing errors in languages with dynamic process creation and communication based on asynchronous message passing. Our analysis is completely automatic, fast, and strikes a proper balance between soundness and completeness: it is effective in detecting errors and avoids false alarms by computing a close approximation of the interprocess communication topology of programs. We have integrated our analysis in dialyzer, a widely used tool for detecting software defects in Erlang programs, and demonstrate its effectiveness on libraries and applications of considerable size. Despite the fact that these applications have been developed over a long period of time and are reasonably well-tested, our analysis has managed to detect a significant number of previously unknown message passing errors in their code
Disorder, spin-orbit, and interaction effects in dilute
We derive an effective Hamiltonian for in
the dilute limit, where can be described in
terms of spin polarons hopping between the {\rm Mn} sites and coupled
to the local {\rm Mn} spins. We determine the parameters of our model from
microscopic calculations using both a variational method and an exact
diagonalization within the so-called spherical approximation. Our approach
treats the extremely large Coulomb interaction in a non-perturbative way, and
captures the effects of strong spin-orbit coupling and Mn positional disorder.
We study the effective Hamiltonian in a mean field and variational calculation,
including the effects of interactions between the holes at both zero and finite
temperature. We study the resulting magnetic properties, such as the
magnetization and spin disorder manifest in the generically non-collinear
magnetic state. We find a well formed impurity band fairly well separated from
the valence band up to for which finite size
scaling studies of the participation ratios indicate a localization transition,
even in the presence of strong on-site interactions, where is the fraction of magnetically active Mn. We study the
localization transition as a function of hole concentration, Mn positional
disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure
- …
