97 research outputs found
Influence of pumpkin seed oil in continuous phase on droplet size and stability of water-in-oil emulsions
The aim of this work was to contribute to the optimized production of water-in-oil emulsions with pumpkin seed oil in the oil phase using a high-speed homogenizer. Pumpkin seed oil is a valuable natural source of essential fatty acids and biologically active micronutrients that contribute to its nutritive value and medical uses, and reduce interfacial tension between water and the oil phases. Therefore, pumpkin seed oil can be considered as a prosperous oil phase whose use can possibly decrease the amount of some emulsifier that is normally involved in every emulsification process. A central composite rotatable experimental design was implemented to analyze the impact of the contents of polyglycerol polyricinoleate and pumpkin seed oil in the continuous phase, as well as water phase content in the emulsion on droplet size distribution and the response surface methodology was used to obtain optimal conditions for water-in-oil emulsion preparation. Mean size diameter of water droplets was in a range from 400 to 850 nm, with mean peak width of 100 to 220 nm, respectively. The influence of all three investigated factors on the emulsification was determined. Additionally, the emulsions prepared with pumpkin seed oil showed a higher stability during the storage time compared to the emulsions with sunflower oil
The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana.
The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.The work conducted by TT and NN was supported by a grant from the BBSRC:
BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme
(BSBEC) to PD and DNB. The work of PD was supported by the European
Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the
grant agreement #251132. The NMR facility infrastructure was supported by the
BBSRC and the Wellcome Trust. TCFG thanks CNPq (Brazil) for a graduate
fellowship (grant # 140978/2009-7). MSS thanks CEPROBIO (grant # 490022/2009-
0) and FAPESP for funding (grant #2013/08293-7).This is the accepted version of the following article: "Busse-Wicher, M; Gomes, T.C.F; Tryfona, T; Nikolovski, N; Stott, K; Grantham, N.J; Bolam, D.N; Skaf, M.S; Dupree, P. (2014) "The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a two-fold helical screw in the secondary plant cell wall of Arabidopsis thaliana." The Plant Journal. Accepted article [electronic] 10.1111/tpj.12575", which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/tpj.12575/abstrac
Frequency and Time Response of Power Plant Grounding System Exposed to Lightning Strike
This paper examines the frequency response of power plant grounding system exposed to the lightning current. Large amount of current generated by the stroke flow in the grounding system of power plant and dissipate in the soil. The electric and magnetic field generated by such high voltages and currents may cause damage of equipment and may be dangerous for the personnel in power plant. For the every given frequency obtained using Fast Fourier Transformation (FFT) of lightning current impulse, electromagnetic field theory approach is used to solve Maxell’s equation and compute scalar potential, electric and magnetic field. Also, the influence of the point in which lightning current is diffused in the grounding system is presented. Three dimensional plots of spatial distribution of scalar potential, electric and magnetic field are presented. The time domain response of scalar potential, electric and magnetic field on one profile is also presented
An Adaptive Neuro-Fuzzy Inference System in Assessment of Technical Losses in Distribution Networks
The losses in distribution networks have always been key elements in predicting investment, planning work, evaluating the efficiency and effectiveness of a network. This paper elaborates on the use of fuzzy logic systems in analyzing the data from a particular substation area predicting losses in the low voltage network. The data collected from the field were obtained from the Automatic Meter Reading (AMR) and Automatic Meter Management (AMM) systems. The AMR system is fully implemented in EPHZHB and integrated within the network infrastructure at secondary level substations 35/10kV and 10(20)/0.4 kV. The AMM system is partially implemented in the areas of electrical energy consumers; precisely, in accounting meters. Daily information gathered from these systems is of great value for the calculation of technical and non-technical losses. Fuzzy logic in combination with the Artificial Neural Networks implemented via the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used. Finally, FIS Sugeno, FIS Mamdani and ANFIS are compared with the measured data from smart meters and presented with their errors and graphs
Protection Coordination and Anti Islanding Protection Solution for Biomass Power Plant Connected on Distribution Network
Protection coordination as well as anti-island protection play significant role in the process of biomass power plant connection on the distribution network. Distribution generation island operation in Croatia is unacceptable according to the existing National grid code Paper presents a protection coordination of all passive protections used in the real biomass power plant and connected distriubution network feeder. Short-circuits three phase, two phase and single line to ground faults and generator islanding simulations have been performed and simulated in the time domain at the different network locations using DIgSILENT Power Factory software. The time-current plots coordination of protective devices are made using Smart PDC module in Easy Power Protector software tool
Transient Phenomena during the Three-Phase 300MVA Transformer Energization on the Transmission Network
Connecting the transformer to the network may incur inrush current, which is significantly higher than the rated current of the transformer. The main cause of this phenomenon lies in the nonlinearity of the magnetic circuit. The value of the inrush current depends of the time moment of the energization and the residual magnetism in the transformer core. While connecting, the operating point of the magnetization characteristic can be found deep in the saturation region resulting in occurrence of large transformer currents that can trigger the transformer protection. Tripping of protection immediately after the transformer energization raises doubts about the transformer health. Inrush current can cause a number of other disadvantages such as the negative impact on other transformers connected on the same busbar; the increase of the transformer noise due to the large current value, the increase of the voltage drops in the network. The paper presents a simulation of the 300 MVA transformer energization using the MATLAB/Simulink software.
Integration of Solar Power Plant in Distribution Network
This paper presents the integration of the solar power plant SE Gumiimpex, rated power of 1 MW in Croatian distribution network. Basic data of solar power plant are presented as well as the analysis of its impact on the distribution network. Power quality measurements, seven days before and seven days after the connection of PV plant to the grid are performed and obtained power quality indices are compared to those stated in the power quality standard HRN EN 50160/2012 and Croatian grid code. There are also presented results of the simulation of protection relays selection and coordinatio
Homologous Seminal Plasma and Glutathione Promote Pre-capacitation Motility and Structural Stability of Cryopreserved Ram Spermatozoa
Reduced glutathione (GSH) and homologous ram seminal plasma (HSP), used as additives in cryopreserving (CP) media prior to freezing, showed conflicting results in retaining structural integrity and progressive motility in post-thawed ram spermatozoa. The aims of this research were (1) to assess the effect of GSH and/or HSP supplementation via soybean-lecithin CP extender on cryopreserved ram spermatozoa viability, morphology and motility pattern; and (2) to assess the effect of incubation in the context of the previous aim. Quantitatively and qualitatively, homogenized and pooled ram ejaculates (N=10) were extended with one of the following extenders Control (C)-tris-based, GSH and HSP-free, experimental-1 (E1)-C + GSH 5 mM, experimental-2 (E2)-C + HSP 20 % and experimental-3 (E3)-GSH 5 mM + HSP 20 %. Following thawing, samples were taken at 0-A nd 3-hours from each group (n=10) and were assessed for spermatozoa viability, morphology, and motility pattern. C-0h samples yielded a spermatozoa population with low viability, altered head morphology and highly deviated motility pattern. E3-3h samples yielded spermatozoa with unaffected viability, head morphology and high progressive motility. In conclusion, E3 extender added to cryopreserved-thawed ram spermatozoa is most efficient in obtaining high viability, unaltered head morphology, and progressive motility
Multidimentional proteomics for cell biology
The proteome is a dynamic system in which each protein has interconnected properties — dimensions — that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes
Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson’s Disease
Parkinson’s disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results
- …
