127 research outputs found
Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders
The recent discovery of thousands of long non-coding (lnc)RNAs in the human genome has prompted investigation of the potential roles of these molecules in human biology and medicine. Indeed, it is now well documented that many lncRNAs are involved in key biological processes, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing of pre-mRNA, nuclear organization; and potentially many other biological processes, which are yet to be elucidated. Recently, a number of studies have also reported that lncRNAs are dysregulated in a number of human diseases, including several cancers and neurological disorders. Although many of these studies have fallen short of implicating lncRNAs as causative, they suggest potential roles that warrant further in depth investigations. In this review, we discuss the current state of knowledge regarding the roles of lncRNAs in cancer and neurological disorders, and suggest potential future directions in this rapidly emerging field
Design and feasibility testing of a novel group intervention for young women who binge drink in groups
BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial
Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity.
RNA binding proteins (RBPs) are typically involved in non-equilibrium cellular processes, and specificity can arise from differences in ground state, transition state, or product states of the binding reactions for alternative RNAs. Here, we use high-throughput methods to measure and analyze the RNA association kinetics and equilibrium binding affinity for all possible sequence combinations in the precursor tRNA binding site of C5, the essential protein subunit of Escherichia coli RNase P. The results show that the RNA sequence specificity of C5 arises due to favorable RNA-protein interactions that stabilize the transition state for association and bound enzyme-substrate complex. Specificity is further impacted by unfavorable RNA structure involving the C5 binding site in the ground state. The results illustrate a comprehensive quantitative approach for analysis of RNA binding specificity, and show how both RNA structure and sequence preferences of an essential protein subunit direct the specificity of a ribonucleoprotein enzyme
Interaction of smoking and occupational noise exposure on hearing loss: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Noise is the most common hazardous agent at workplaces. Noise induced hearing loss (NIHL) has been known since the industrial revolution. Although NIHL is permanent, irreversible and frequent, it is preventable. The economic costs of NIHL have been estimated to be about billions of dollars. Besides, cigarette smoking is a common habit worldwide, and according to some recent studies smoking and noise may act in common causal pathways for hearing loss.</p> <p>Methods</p> <p>A cross-sectional study was designed to study the effect of smoking on NIHL in 206 male smoker workers and 206 male non-smoker workers in a large food-producing factory, in which workers were exposed to noise levels exceeding 85dBA. To determine noise exposure level, we used sound level measurements reported by industrial hygienists.</p> <p>A qualified audiologist assessed hearing acuity by using standardized audiometric procedures assuring at least 14 h of noise avoidance.</p> <p>Results</p> <p>We observed that the percentage of workers with hearing threshold differences of greater than or equal to 30 dB between 4000 Hz and 1000 Hz in both ears were 49.5% and 11.2% in smoker and non smoker groups, respectively (Odds ratio = 7.8, 95% CI = 4.7 – 13), and the percentage of workers with a hearing threshold of greater than 25dB at 4000 Hz in the better ear were 63.6% and 18.4% in smoker and non smoker groups, respectively. This difference was statistically significant after adjustment for age and exposure duration.</p> <p>Conclusion</p> <p>It can be concluded that smoking can accelerate noise induced hearing loss, but more research is needed to understand the underlying mechanisms. Accurate follow up of smoker workers who are exposed to noise levels exceeding 85 dBA is suggested. Smokers should periodically attend educational courses on "smoking cessation", especially in noisy workplaces.</p
The association between exposure to social media alcohol marketing and youth alcohol use behaviors in India and Australia
© 2018 The Author(s). Background: Alcohol marketing on social networking sites (SNS) is associated with alcohol use among young people. Alcohol companies adapt their online marketing content to specific national contexts and responses to such content differ by national settings. However, there exists very little academic work comparing the association between alcohol marketing on SNS and alcohol use among young people in different national settings and across different SNS. Therefore, we aimed to extend the limited existing work by investigating and comparing the association between self-reported exposure to alcohol marketing on three leading SNS (Facebook, YouTube, and Twitter) and alcohol use among young people in diverse national contexts (India and Australia). Methods: Cross-sectional, self-report data were obtained from a convenience sample of 631 respondents (330 in India; 301 in Australia) aged 13-25 years via online surveys. Respondents answered questions on their drinking behaviors and involvement with alcohol marketing on SNS. Results: Many respondents from both countries reported interacting with alcohol content online, predominantly on Facebook, followed by YouTube and then Twitter. The interaction was primarily in the forms of posting/liking/sharing/commenting on items posted on alcohol companies' social media accounts, viewing the event page/attending the event advertised by an alcohol company via social media, and/or accessing an alcohol website. Multivariate analyses demonstrated significant associations between respondents' interaction with alcohol content and drinking levels, with effects differing by SNS, demographic group, and country. For example, having friends who shared alcohol-related content was an important predictor of usual alcohol consumption for Indian respondents (p <.001), whereas posting alcohol-related information themselves was a stronger predictor among Australians (p <.001). Conclusions: The results suggest that interaction with alcohol-related content on SNS is associated with young people's alcohol use behaviors and that these behaviors vary by national settings. This study extends previous work by demonstrating this connection across varying social media platforms and national contexts. The results highlight the need to formulate and implement strategies to effectively regulate the SNS alcohol marketing, especially among younger SNS users
Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFβ1
BACKGROUND: Wounds in the nonglabrous skin of keloid-prone individuals tend to cause large disordered accumulations of collagen which extend beyond the original margins of the wound. In addition to abnormalities in keloid fibroblasts, comparison of dermal fibroblasts derived from nonwounded glabrous or nonglabrous skin revealed differences that may account for the observed location of keloids. METHODS: Fibroblast apoptosis and the cellular content of α-smooth-muscle actin, TGFβ1 receptorII and ED-A fibronectin were estimated by FACS analysis. The effects of TGFβ1 and serum were examined. RESULTS: In monolayer cultures non-glabrous fibroblasts were slower growing, had higher granularity and accumulated more α-smooth-muscle actin than fibroblasts from glabrous tissues. Keloid fibroblasts had the highest level of α-smooth-muscle actin in parallel with their expression level of ED-A fibronectin. TGFβ1 positively regulated α-smooth-muscle actin expression in all fibroblast cultures, although its effects on apoptosis in fibroblasts from glabrous and non-glabrous tissues were found to differ. The presence of collagen I in the ECM resulted in reduction of α-smooth-muscle actin. A considerable percentage of the apoptotic fibroblasts in attached gels were α-smooth-muscle actin positive. The extent of apoptosis correlated positively with increased cell and matrix relaxation. TGFβ1 was unable to overcome this apoptotic effect of matrix relaxation. CONCLUSION: The presence of myofibroblasts and the apoptosis level can be regulated by both TGFβ1 and by the extracellular matrix. However, reduction of tension in the matrix is the critical determinant. This predicts that the tension in the wound bed determines the type of scar at different body sites
Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation
Background: Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Methods: Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Results: Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6–12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Conclusions: Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations
Dutch Racism as the Ghost in the Machine: a Discourse Analysis of the Reproduction of Racism in Dutch Contemporary Media
‘Dutch Racism as “the Ghost in the Machine”’ examines the reproduction of racism in Dutch contemporary media by analysing the main case study, the racist responses to the Selfie posted by the Dutch soccer team in November 2014, through a critical discourse analysis of three different types of media and integrating the discipline of race relations theory to answer the main research question in a focused yet broad perspective. This thesis builds upon the scholarship of critics such as Philomena Essed, Isabel Hoving, Halleh Ghorashi, Dienke Hondius, and Teun van Dijk. As contemporary visual media present us with increasing numbers and kinds of images, we must continually reassess our criteria of evaluation, particularly for issues as precarious as racial identity and discrimination. Owing to the fact that the situation in the Netherlands is becoming increasingly hostile towards migrants and other cultures living in the country, both socially and politically, it is neces! sary to c ritically look at how the media are influencing our thoughts to fear ‘the other’
The contribution of the C5 protein subunit of <i>Escherichia coli</i> ribonuclease P to specificity for precursor tRNA is modulated by proximal 5′ leader sequences
Recognition of RNA by RNA processing enzymes and RNA binding proteins often involves cooperation between multiple subunits. However, the interdependent contributions of RNA and protein subunits to molecular recognition by ribonucleoproteins are relatively unexplored. RNase P is an endonuclease that removes 5′ leaders from precursor tRNAs and functions in bacteria as a dimer formed by a catalytic RNA subunit (P RNA) and a protein subunit (C5 in E. coli). The P RNA subunit contacts the tRNA body and proximal 5′ leader sequences [N(−1) and N(−2)] while C5 binds distal 5′ leader sequences [N(−3) to N(−6)]. To determine whether the contacts formed by P RNA and C5 contribute independently to specificity or exhibit cooperativity or anti-cooperativity, we compared the relative kcat/Km values for all possible combinations of the six proximal 5′ leader nucleotides (n = 4096) for processing by the E. coli P RNA subunit alone and by the RNase P holoenzyme. We observed that while the P RNA subunit shows specificity for 5′ leader nucleotides N(−2) and N(−1), the presence of the C5 protein reduces the contribution of P RNA to specificity, but changes specificity at N(−2) and N(−3). The results reveal that the contribution of C5 protein to RNase P processing is controlled by the identity of N(−2) in the pre-tRNA 5′ leader. The data also clearly show that pairing of the 5′ leader with the 3′ ACCA of tRNA acts as an anti-determinant for RNase P cleavage. Comparative analysis of genomically encoded E. coli tRNAs reveals that both anti-determinants are subject to negative selection in vivo.</jats:p
- …
