214 research outputs found

    Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil.

    Get PDF
    The São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that orgThe São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that organic fertilization can improve soil quality, we compared the effects of conventional and organic soil management on microbial activity and mycorrhization of seedless grape crops. We measured glomerospores number, most probable number (MPN) of propagules, richness of arbuscular mycorrhizal fungi (AMF) species, AMF root colonization, EE-BRSP production, carbon microbial biomass (C-MB), microbial respiration, fluorescein diacetate hydrolytic activity (FDA) and metabolic coefficient (qCO2). The organic management led to an increase in all variables with the exception of EE-BRSP and qCO2. Mycorrhizal colonization increased from 4.7% in conventional crops to 15.9% in organic crops. Spore number ranged from 4.1 to 12.4 per 50 g-1 soil in both management systems. The most probable number of AMF propagules increased from 79 cm-3 soil in the conventional system to 110 cm-3 soil in the organic system. Microbial carbon, CO2 emission, and FDA activity were increased by 100 to 200% in the organic crop. Thirteen species of AMF were identified, the majority in the organic cultivation system. Acaulospora excavata, Entrophospora infrequens, Glomus sp.3 and Scutellospora sp. were found only in the organically managed crop. S. gregaria was found only in the conventional crop. Organically managed vineyards increased mycorrhization and general soil microbial activity

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    “It’s just another car driving” − Perceptions of U.S. residents interacting with driverless automated vehicles on public roads

    Get PDF
    Driverless, SAE Level 4 automated vehicles (AVs)—vehicles operating without on-board human operators—have become operational in some cities in the U.S. The driving style and behaviors of AVs can induce changes in the behavior of road users interacting with AVs in traffic. Prior research has not collected data from road users residing in areas in which AVs are deployed and who have solid experience with AVs by regular interactions with them. As a result, a comprehensive and rich analysis of road users’ responses to AVs in traffic based on solid experience and the underlying reasons is missing. The two main research questions of this study are: 1) How do road users respond to AVs in traffic? and 2) Which factors affect road users’ responses to AVs in traffic? Semi-structured interviews were conducted with individuals residing in U.S. cities in which driverless AVs are deployed to explore how and why road users respond to driverless AVs in traffic. Content analysis was applied to manually identify themes in the data, complemented by using large language models. We also computed Spearman rank-order correlations to determine significant associations between the sub-themes. The most common road user behaviors were being more cautious around AVs, letting the AV pass and waving and gawking at them. Road users took advantage of the capabilities of AVs, cutting them off, slowing them down, or recklessly crossing the road in front. The AV safety operators typically monitored the operation of the AV, contributing to the perception that AVs are safe and predictable. Other participants reported incidences of inattentive drivers / human operators of Tesla’s SAE Level 2 partially automated driving system, being observed sleeping in the AV and rear-ending one of our participants. The most common external communication cue between road users and human drivers was eye contact, in some cases also when there was no operator present. Media reports / personal stories involving fatal accidents with AVs, particularly those linked to Tesla’s partially automated driving system, were linked to concerns about AV safety. Our study reveals significant associations between the behavior of AVs (e.g., AV being stuck) and road users’ changes in behavior, cognition (e.g., trust, distrust) and affect (e.g., perceived safety, frustration or anger). More trials with AVs on public roads can promote the interest and curiosity of road users, and their acceptance and use of AVs. The need for eHMIs and their effectiveness in promoting safer, more efficient, and comfortable interactions needs to be further investigated

    Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model

    Get PDF
    BackgroundEnhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application.MethodsTo investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis.ResultsWhole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium.ConclusionsThis study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep

    Progress towards sustainable control of xylella fastidiosa subsp. Pauca in olive groves of salento (apulia, italy)

    Get PDF
    Xylella fastidiosa subsp. pauca is the causal agent of “olive quick decline syndrome” in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex—Dentamet® —reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A1 H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento

    Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia

    Get PDF
    The main objective of this study was to shed light on the previously unknown arbuscular mycorrhizal fungal (AMF) communities in Southern Arabia. We explored AMF communities in two date palm (Phoenix dactylifera) plantations and the natural vegetation of their surrounding arid habitats. The plantations were managed traditionally in an oasis and according to conventional guidelines at an experimental station. Based on spore morphotyping, the AMF communities under the date palms appeared to be quite diverse at both plantations and more similar to each other than to the communities under the ruderal plant, Polygala erioptera, growing at the experimental station on the dry strip between the palm trees, and to the communities uncovered under the native vegetation (Zygophyllum hamiense, Salvadora persica, Prosopis cineraria, inter-plant area) of adjacent undisturbed arid habitat. AMF spore abundance and species richness were higher under date palms than under the ruderal and native plants. Sampling in a remote sand dune area under Heliotropium kotschyi yielded only two AMF morphospecies and only after trap culturing. Overall, 25 AMF morphospecies were detected encompassing all study habitats. Eighteen belonged to the genus Glomus including four undescribed species. Glomus sinuosum, a species typically found in undisturbed habitats, was the most frequently occurring morphospecies under the date palms. Using molecular tools, it was also found as a phylogenetic taxon associated with date palm roots. These roots were associated with nine phylogenetic taxa, among them eight from Glomus group A, but the majority could not be assigned to known morphospecies or to environmental sequences in public databases. Some phylogenetic taxa seemed to be site specific. Despite the use of group-specific primers and efficient trapping systems with a bait plant consortium, surprisingly, two of the globally most frequently found species, Glomus intraradices and Glomus mosseae, were not detected neither as phylogenetic taxa in the date palm roots nor as spores under the date palms, the intermediate ruderal plant, or the surrounding natural vegetation. The results highlight the uniqueness of AMF communities inhabiting these diverse habitats exposed to the harsh climatic conditions of Southern Arabia

    Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Get PDF
    BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. METHODOLOGY/PRINCIPAL FINDINGS: First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between -22 and -35%). In a subsequent experiment, we selected three of the negatively responding weed species--Echinochloa crus-galli, Setaria viridis and Solanum nigrum--and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. CONCLUSIONS/SIGNIFICANCE: Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions

    Soil–strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants?

    Get PDF
    Consistency of response to arbuscular mycorrhizal (AM) inoculation is required for efficient use of AM fungi in plant production. Here, we found that the response triggered in plants by an AM strain depends on the properties of the soil where it is introduced. Two data sets from 130 different experiments assessing the outcome of a total of 548 replicated single inoculation trials conducted either in soils with a history of (1) high input agriculture (HIA; 343 replicated trials) or (2) in more pristine soils from coffee plantations (CA; 205 replicated trials) were examined. Plant response to inoculation with different AM strains in CA soils planted with coffee was related to soil properties associated with soil types. The strains Glomus fasciculatum-like and Glomus etunicatum-like were particularly performant in soil relatively rich in nutrients and organic matter. Paraglomus occultum and Glomus mosseae-like performed best in relatively poor soils, and G. mosseae and Glomus manihotis did best in soils of medium fertility. Acaulospora scrobiculata, Diversispora spurca, G. mosseae-like, G. mosseae and P. occultum stimulated coffee growth best in Chromic, Eutric Alluvial Cambisol, G. fasciculatum-like and G. etunicatum-like in Calcaric Cambisol and G. manihotis, in Chromic, Eutric Cambisols. Acaulospora scrobiculata and Diversispora spurca strains performed best in Chromic Alisols and Rodic Ferralsols. There was no significant relationship between plant response to AM fungal strains and soil properties in the HIA soil data set, may be due to variation induced by the use of different host plant species and to modification of soil properties by a history of intensive production. Consideration of the performance of AM fungal strains in target soil environments may well be the key for efficient management of the AM symbiosis in plant production
    corecore