191 research outputs found
Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence
Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation profiling of ∼20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome
Procjena cito-/genotoksičnosti irinotekana u V79-stanicama primjenom komet-testa, mikronukleus-testa i testa kromosomskih aberacija
Irinotecan is a topoisomerase I interactive agent, widely used in the treatment of metastatic colorectal cancer. The genotoxic effects of the maximum single dose (18 μg mL-1), recommended monotherapy dose (9 μg mL-1), and recommended combined therapy dose (4.5 μg mL-1) of irinotecan were studied on V79 cells using the comet assay, chromosome aberration assay, and micronucleus test. The cells were treated with irinotecan for 2 h or 24 h. The statistical signifi cance of the results was determined using the one-way ANOVA test and a nonparametric Mann Whitney U test. The comet assay did not show dose-dependent or time-dependent effects. The chromosome aberration analysis showed large DNA rearrangements, i.e.,
chromosome exchanges. Although the exposed cultures showed a signifi cant increase in micronucleated cells in respect to control, no dose-dependent relation was established among the treated cultures. Timedependent effect was also not observed.Irinotekan je citotoksični lijek koji inhibira enzim DNA-topoizomerazu I. U širokoj je primjeni u terapiji metastatskog karcinoma kolona i rektuma. U uvjetima in vitro primjenom komet-testa, analize kromosomskih aberacija i mikronukleus-testa na V79-stanicama istražili smo genotoksični učinak maksimalne pojedinačne
doze (18 μg mL-1), preporučene monoterapijske doze (9 μg mL-1) i preporučene doze irinotekana za kombiniranu terapiju (4,5 μg mL-1). Kulture stanica bile su tretirane irinotekanom 2 h i 24 h. Statistička
značajnost određivana je jednosmjernim ANOVA-testom i neparametrijskim Mann Whitneyevim U-testom.
Komet-testom nije utvrđen učinak koncentracije i/ili vremena izloženosti. Analiza kromosomskih aberacija pokazala je prisutnost izmjena kromatida, tj. porast broja triradijusa i tetraradijusa. Iako je u kulturama stanica izloženi irinotekanu opažen značajan porast broja mikronukleusa u odnosu na kontrolu, nije uočena ovisnost o dozi lijeka ni o vremenu izloženosti u opisanim eksperimentalnim uvjetima. Dobiveni rezultati upućuju na genotoksičnost irinotekana za V79-stanice. Nijednom od primijenjenih metoda nije utvrđena ovisnost učinka irinotekana o vremenu ili dozi
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
The disruption of proteostasis in neurodegenerative diseases
Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
Mendelian randomization in (epi)genetic epidemiology: an effective tool to be handled with care
RNA promotes the formation of spatial compartments in the nucleus
The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions
Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance
Peer reviewe
Safety and outcomes of routine endovascular thrombectomy in large artery occlusion recorded in the SITS Register: An observational study
Background and objective We aimed to evaluate the safety and outcomes of thrombectomy in anterior circulation acute ischaemic stroke recorded in the SITS-International Stroke Thrombectomy Register (SITS-ISTR) and compare them with pooled randomized controlled trials (RCTs) and two national registry studies. Methods We identified centres recording >= 10 consecutive patients in the SITS-ISTR with at least 70% of available modified Rankin Scale (mRS) at 3 months during 2014-2019. We defined large artery occlusion as intracranial internal carotid artery, first and second segment of middle cerebral artery and first segment of anterior cerebral artery. Outcome measures were functional independence (mRS score 0-2) and death at 3 months and symptomatic intracranial haemorrhage (SICH) per modified SITS-MOST. Results Results are presented in the following order: SITS-ISTR, RCTs, MR CLEAN Registry and German Stroke Registry (GSR). Median age was 73, 68, 71 and 75 years; baseline NIHSS score was 16, 17, 16 and 15; prior intravenous thrombolysis was 62%, 83%, 78% and 56%; onset to reperfusion time was 289, 285, 267 and 249 min; successful recanalization (mTICI score 2b or 3) was 86%, 71%, 59% and 83%; functional independence at 3 months was 45.5% (95% CI: 44-47), 46.0% (42-50), 38% (35-41) and 37% (35-41), respectively; death was 19.2% (19-21), 15.3% (12.7-18.4), 29.2% (27-32) and 28.6% (27-31); and SICH was 3.6% (3-4), 4.4% (3.0-6.4), 5.8% (4.7-7.1) and not available. Conclusion Thrombectomy in routine clinical use registered in the SITS-ISTR showed safety and outcomes comparable to RCTs, and better functional outcomes and lower mortality than previous national registry studies.Peer reviewe
Family-Level Sampling of Mitochondrial Genomes in Coleoptera : Compositional Heterogeneity and Phylogenetics
Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.Peer reviewe
Improving EGM2008 by GPS and leveling data at local scale
The development of the Earth Gravitational Model 2008 (EGM2008) model is a significant contribution for modeling the Earth's gravity and geoid. Recently, it can be confidently used versus geometric models following a simple refinement procedure. Several studies show that, EGM2008 can reach the accuracy of regional or local geoid models after modeling the differences between the GPS-leveling geoid heights and EGM2008 derived geoid heights at identified control points. The study focuses on a corrector surface fitting (CSF) approach based on radial basis functions (RBF) as improvement procedure for EGM2008. A detailed mathematical model and solution algorithm of the proposed model is given, and it has been applied in different test areas covering the city borders of Bursa, Konya, Denizli and Gaziantep in Turkey. Accuracy of the improved model was evaluated in scattered check points within test regions. The geoid heights of all check points obtained by GPS-leveling measurements were compared with the geoid heights obtained from improved model. The discrepancies between the calculated and measured geoid heights were analyzed and discussed
- …
