29 research outputs found

    Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study

    Get PDF
    5-Fluorouracil (5-FU)-based chemotherapy is frequently associated with diarrhoea. We compared two 5-FU-based regimens and the effect of Lactobacillus and fibre supplementation on treatment tolerability. Patients diagnosed with colorectal cancer (n=150) were randomly allocated to receive monthly 5-FU and leucovorin bolus injections (the Mayo regimen) or a bimonthly 5-FU bolus plus continuous infusion (the simplified de Gramont regimen) for 24 weeks as postoperative adjuvant therapy. On the basis of random allocation, the study participants did or did not receive Lactobacillus rhamnosus GG supplementation (1–2 × 1010 per day) and fibre (11 g guar gum per day) during chemotherapy. Patients who received Lactobacillus had less grade 3 or 4 diarrhoea (22 vs 37%, P=0.027), reported less abdominal discomfort, needed less hospital care and had fewer chemotherapy dose reductions due to bowel toxicity. No Lactobacillus-related toxicity was detected. Guar gum supplementation had no influence on chemotherapy tolerability. The simplified de Gramont regimen was associated with fewer grade 3 or 4 adverse effects than the Mayo regimen (45 vs 89%), and with less diarrhoea. We conclude that Lactobacillus GG supplementation is well tolerated and may reduce the frequency of severe diarrhoea and abdominal discomfort related to 5-FU-based chemotherapy

    Overview of fast particle experiments in the first MAST Upgrade experimental campaigns

    Get PDF
    MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfvénic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in burning plasmas. The MeV range D-D fusion product ions are also produced but are not confined. Simulations with the ASCOT code show that up to 20% of fast ions produced by NBI can be lost due to charge exchange (CX) with edge neutrals. Dedicated experiments employing low field side (LFS) gas fuelling show a significant drop in the measured neutron fluxes resulting from beam-plasma reactions, providing additional evidence of CX-induced fast-ion losses, similar to the ASCOT findings. Clear evidence of fast-ion redistribution and loss due to sawteeth (ST), fishbones (FB), long-lived modes (LLM), Toroidal Alfvén Eigenmodes (TAE), Edge Localised Modes (ELM) and neoclassical tearing modes (NTM) has been found in measurements with a Neutron Camera (NCU), a scintillator-based Fast-Ion Loss Detector (FILD), a Solid-State Neutral Particle Analyser (SSNPA) and a Fast-Ion Deuterium-α (FIDA) spectrometer. Unprecedented FILD measurements in the range of 1–2 MHz indicate that fast-ion losses can be also induced by the beam ion cyclotron resonance interaction with compressional or global Alfvén eigenmodes (CAEs or GAEs). These results show the wide variety of scenarios and the unique conditions in which fast ions can be studied in MAST-U, under conditions that are relevant for future devices like STEP or ITER

    Effect of energetic ions on edge-localized modes in tokamak plasmas

    Get PDF

    Barley starch

    Get PDF
    This thesis examined barley amylopectin structure and looked for correlations between the structure and physical properties of starch. The structure of amylopectin and gelatinisation and retrogradation of starch were studied in 10 different barley cultivars/breeding lines with differing genetic background. Amylopectin is built up of thousands of chains of glucose monomers, organised into clusters. The detailed fine structure of amylopectin was studied by isolating clusters of amylopectin and their building blocks, which are the tightly branched units building up the clusters. Barley cultivars/breeding lines possessing the amo1 mutation had fewer long chains of DP≥38 in amylopectin and more large building blocks. The structure of building blocks was rather conserved between the different barley cultivars/breeding lines studied and was categorized into different size groups. These different building blocks were shown to be randomly distributed in the amylopectin molecule. The C-chains in amylopectin can be of any length and are a category of chains different from the B-chains. The backbone in amylopectin consists of a special type of B-chains which, when cleaved by α-amylase, become chains of a similar type to C-chains. Gelatinisation and retrogradation (recrystallisation of gelatinised starch) of barley starch was studied by differential scanning calorimetry. The amo1 mutation resulted in a broader gelatinisation temperature range and a higher enthalpy of retrogradation. Other structural features were also found to influence the physical properties of starch. Small clusters and denser structure of the building blocks resulted in higher gelatinisation temperature. Fast retrogradation was observed in barley which had amylopectin with shorter chains and many large building blocks consisting of many chains. Amylopectin structure was also studied in developing barley kernels. Three barley cultivars/breeding lines were grown in a phytotron and kernels were harvested at 9, 12 and 24 days after flowering. The results showed that amylopectin synthesized at later stages of development had a more tightly branched structure. Expression of the enzymes involved in starch biosynthesis is also known to change during endosperm development

    Systematic Analysis of Information Management Challenges within Long-Term Collaborative Networks

    No full text
    Part 15: Virtual Organization Breeding EnvironmentsInternational audienceLong-term strategic networks – the so called Virtual organizations Breeding Environments (VBEs) – support their members with formation of virtual organizations (VOs), aimed to address opportunities in market/society. But, both establishment and management of these networks are challenging. On one hand, VBE aims at guiding its member organizations to accumulate/share their abilities and resources and work together as one strong virtual company. On the other hand, attempts to aggregate their competencies and resources to both identify what they can jointly achieve and to represent them as a single strong entity in the market/society. These in turn require support for strong interaction and interoperability among VBE members, as well as preserving interdependencies among their variety of information. This paper systematically analyses the base requirements and describes foundational criteria for modeling and management of information in VBEs. Particularly, it justifies the need for development of a generic unified VBE ontology-based system, in response to the identified VBE information management challenges. Finally, it specifies the main research problem areas and questions. Forthcoming publications will focus on the next steps of this research and how the raised research questions are addressed by our designed mechanisms and developed systems

    Russia from Bust to Boom and Back: Oil Price, Dutch Disease and Stabilisation Fund

    No full text
    This paper develops and estimates a small macroeconomic model of the Russian economy. The model is tailored to analyse the impact of the oil price, the exchange rate, private sector confidence and fiscal policy on economic performance. Simulations suggest that the Russian economy is vulnerable to downward oil price shocks. We substantiate two mechanisms that mitigate the economic effects of oil price shocks, namely the stabilisation brought by the Oil Stabilisation Fund and the Dutch disease effect. The fiscal policies of the Putin administration temper economic fluctuations caused by oil price shocks. Comparative Economic Studies (2009) 51, 213–241. doi:10.1057/ces.2009.2

    Overview of physics results from MAST upgrade towards core-pedestal-exhaust integration

    No full text
    Publisher Copyright: © 2024 Crown copyright, UK Atomic Energy Authority & The Author(s).Recent results from MAST Upgrade are presented, emphasising understanding the capabilities of this new device and deepening understanding of key physics issues for the operation of ITER and the design of future fusion power plants. The impact of MHD instabilities on fast ion confinement have been studied, including the first observation of fast ion losses correlated with Compressional and Global Alfvén Eigenmodes. High-performance plasma scenarios have been developed by tailoring the early plasma current ramp phase to avoid internal reconnection events, resulting in a more monotonic q profile with low central shear. The impact of m/n = 3/2, 2/1 and 1/1 modes on thermal plasma confinement and rotation profiles has been quantified, and scenarios optimised to avoid them have transiently reached values of normalised beta approaching 4.2. In pedestal and ELM physics, a maximum pedestal top temperature of ∼350 eV has been achieved, exceeding the value achieved on MAST at similar heating power. Mitigation of type-I ELMs with n = 1 RMPs has been observed. Studies of plasma exhaust have concentrated on comparing conventional and Super-X divertor configurations, while X-point target, X-divertor and snowflake configurations have been developed and studied in parallel. In L-mode discharges, the separatrix density required to detach the outer divertors is approximately a factor 2 lower in the Super-X than the conventional configuration, in agreement with simulations. Detailed analysis of spectroscopy data from studies of the Super-X configuration reveal the importance of including plasma-molecule interactions and D2 Fulcher band emission to properly quantify the rates of ionisation, plasma-molecule interactions and volumetric recombination processes governing divertor detachment. In H-mode with conventional and Super-X configurations, the outer divertors are attached in the former and detached in the latter with no impact on core or pedestal confinement.Peer reviewe
    corecore