23,984 research outputs found

    Depinning and dynamic phases in driven three-dimensional vortex lattices in anisotropic superconductors

    Full text link
    We use three-dimensional molecular dynamics simulations of magnetically interacting pancake vortices to study the dynamic phases of vortex lattices in highly anisotropic materials such as BSCCO. Our model treats the magnetic interactions of the pancakes exactly, with long-range logarithmic interactions both within and between planes. The pancake vortices decouple at low drives and show two-dimensional plastic flow. The vortex lattice both recouples and reorders as the driving current is increased, eventually forming a recoupled crystalline-like state at high drives. We construct a phase diagram as a function of interlayer coupling and show the relationship between the recoupling transition and the single-layer reordering transitions.Comment: 2 pages, 1 figure, requires epscrc2.st

    ROCK2/rasHa cooperation induce malignant conversion via p53 loss, elevated NF-κβ and tenascin C-associated rigidity but p21 inhibits ROCK2/NF-κβ-mediated progression

    Get PDF
    To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)- activated ROCK2 [K14.ROCKer] were crossed to mice expressing epidermal activated ras Ha [HK1.ras1205]. At 8 weeks, 4HT-treated K14.ROCKer-HK1.ras1205 cohorts exhibited papillomas similar to HK1.ras1205 controls; however, K14.ROCKer-HK1.ras1205 histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma [wdSCC], exhibiting p53 loss, increased proliferation, and novel NF-κβ expression. By 12 weeks, K14.ROCKer-HK1.ras1205 wdSCCs exhibited increased NF-κβ and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities /p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCKer -HK1.ras1205 papillomatogenesis also required a wound-promotion stimulus, confirmed by breeding K14.ROCKer into promotion-insensitive HK1.ras1276 mice, suggesting a permissive K14.ROCKer-HK1.ras1205 papilloma context [wound-promoted/NF-κβ+ve/p53-ve/p21+ve] preceded K14.ROCKer-mediated [p-Mypt1/tenascin C/rigidity] malignant conversion. Malignancy depended on ROCKer/p-Mypt1 expression, as cessation of 4HT-treatment induced disorganised tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue ECM suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal-layer p21 which confined endogenous ROCK2/p-Mypt1/NF-κβ to supra-basal layers, and was paralleled by restored basal-layer p53. In later SCCs, 4HT-cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κβ expression and tenascin C-associated rigidity; with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma outgrowths, identifies a novel, significant antagonism between p21 and ras Ha/ROCK2/NF-κβ signalling in skin 3 carcinogenesis. Collectively these data show that ROCK2 activation induces malignancy in rasHa-initiated/promoted papillomas in the context of p53 loss and novel NF-κβ expression;whilst increased tissue rigidity and cell motility/contractility help mediate tumour progression

    Investigation of kilovolt ion sputtering second quarterly progress report

    Get PDF
    Kilovolt ion sputtering - electron beam focusing of cesium ion beam, radiation detection in copper atoms, ultrahigh vacuum system construction, and spectrometer pulse heigh

    Collective Sliding States for Colloidal Molecular Crystals

    Full text link
    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.Comment: 4 pages, 5 postscript figure
    corecore