1,177 research outputs found
Masses and decay modes of charmonia using a confinement model
The masses of charmonium s and p-states, pseudoscalar and vector decay
constants, leptonic, hadronic as well as radiative decay widths for charmonia
have been computed in the framework of extended harmonic confinement model
without any additional parameters. The outcome in comparison with other
contemporary theoretical and experimental results is presented.Comment: Submitted to AIP for proceedings of International Workshop on
Theoretical High Energy Physics held at IIT Roorkee, INDIA during 15-20
March, 200
Low-lying di-hadronic states in relativistic harmonic model
Di-hadronic molecules such as di-meson, meson-baryon and di-baryon states are
studied in the relativistic confinement model. We have computed the binding
energy of the di-hadronic systems like , , etc., as
penta-quark states, 2, , , , etc. as
tetra-quark states and , , etc. as di-baryonic
states using a molecular interaction provided by asymptotic expression of the
confined gluon exchange potential. We find the lowest penta-quark state lies in
the energy range of 1.180 - 2.247 GeV as predicted by other theoretical models.
The exotic states such as , , , , , etc. are identified as the di-mesonic
hadron molecules. The low-lying di-baryon molecular states found to be in the
range of 1.990-2.907 GeV with their binding energies lying between 112-120 MeV.Comment: 6 pages, accepted to publish in Indian Journal of Physic
Decay rates of quarkonia with NRQCD formalism using spectroscopic parameters of potential models
Decay rates of quarkonia are studied within the framework of NRQCD formalism.
The basic parameters of the formalism have been obtained from different
potential schemes studied for the spectra of quarkonia. We estimate the heavy
quarkonia mass spectra, radiative and leptonic widths and compare them with
other contemporary theoretical approaches and experimental results.Comment: 15 page
Screening of diverse phytochemicals with Aurora Kinase C protein: An In Silico approach
Aurora Kinase C, a vital serine-threonine protein Kinase, is an important member of the Aurora Kinase protein family which plays an important role in mitosis is a part of Chromosomal Passenger Complex (CPC). Aurora Kinase C over expression is found to be linked with several cancer cell lines which demonstrate its oncogenic involvement and activity. Aurora C over expression in certain cancer types makes it an important target to be considered for cancer therapeutics. The present research work focuses on the Aurora Kinase C as an important target for computational studies. The protein model of Aurora Kinase C, as a proten target on docking with 1500 natural compounds (phytochemicals) reveals the binding of the natural ligand 3-beta,23,28-trihydroxy-12-oleanene 23-caffeate belonging to the terpenoid class with highest docking score. This best bound ligand with the protein Aurora Kinase C was chosen for further understanding their protein-ligand interactions at the the molecular level using the molecular dynamic simulation approach. Stability of the protein-ligand complex and its conformation helps in disclosing the potentiality of the best bound ligand to be further chosen as an important small molecule inhibitor that would help playing a lead role in further drug discovery process
Keywords: Aurora Kinase C, Cancer, Phytochemicals, Docking, Molecular Dynamic
a-Si:H/CuInS<SUB>2</SUB> heterojunctions for photovoltaic conversion
Heterojunctions of hydrogenated a-Si films prepared by r.f. sputtering with spraypyrolyzed CuInS2 films have been studied. Capacitance-voltage measurements establish the formation of abrupt heterojunction. The barrier height varies from 0.26 to 0.55 V as the resistivity of CuInS2 film decrease from 1.5×103 to 65 Ωm. These junctions exhibit photovoltaic behaviour with Voc=220 mV and Isc=0.20 mA/cm2
International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)
Background
Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment.
Methods and results
Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines).
Conclusions
The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …
