65 research outputs found

    The 25 percent-efficient GaAs Cassegrainian concentrator cell

    Get PDF
    Very high-efficiency GaAs Cassegrainian solar cells have been fabricated in both the n-p and p-n configurations. The n-p configuration exhibits the highest efficiency at concentration, the best cells having an efficiency eta of 24.5 percent (100X, AM0, temperature T = 28 C). Although the cells are designed for operation at this concentration, peak efficiency is observed near 300 suns (eta = 25.1 percent). To our knowledge, this is the highest reported solar cell efficiency for space applications. The improvement in efficiency over that reported at the previous SPRAT conference is attributed primarily to lower series resistance and improved grid-line plating procedures. Using previously measured temperature coefficients, researchers estimate that the n-p GaAs cells should deliver approximately 22.5 percent efficiency at the operating conditions of 100 suns and T = 80 C. This performance exceeds the NASA program goal of 22 percent for the Cassegrainian cell. One hundred Cassegrainian cells have been sent to NASA as deliverables, sixty-eight in the n-p configuration and thirty-two in the p-n configuration

    Worker/wrapper/makes it/faster

    Get PDF
    Much research in program optimization has focused on formal approaches to correctness: proving that the meaning of programs is preserved by the optimisation. Paradoxically, there has been comparatively little work on formal approaches to efficiency: proving that the performance of optimized programs is actually improved. This paper addresses this problem for a general-purpose optimization technique, the worker/wrapper transformation. In particular, we use the call-by-need variant of improvement theory to establish conditions under which the worker/wrapper transformation is formally guaranteed to preserve or improve the time performance of programs in lazy languages such as Haskell

    Ultrafast Hole Trapping and Relaxation Dynamics in p-Type CuS Nanodisks

    Get PDF
    CuS nanocrystals are potential materials for developing low-cost solar energy conversion devices. Understanding the underlying dynamics of photoinduced carriers in CuS nanocrystals is essential to improve their performance in these devices. In this work, we investigated the photoinduced hole dynamics in CuS nanodisks (NDs) using the combination of transient optical (OTA) and X-ray (XTA) absorption spectroscopy. OTA results show that the broad transient absorption in the visible region is attributed to the photoinduced hot and trapped holes. The hole trapping process occurs on a subpicosecond time scale, followed by carrier recombination (~100 ps). The nature of the hole trapping sites, revealed by XTA, is characteristic of S or organic ligands on the surface of CuS NDs. These results not only suggest the possibility to control the hole dynamics by tuning the surface chemistry of CuS but also represent the first time observation of hole dynamics in semiconductor nanocrystals using XTA

    Deriving Historical Temperature and Precipitation Time Series For Alaska Climate Divisions Via Climatologically Aided Interpolation

    Get PDF
    This paper describes the construction of temperature and precipitation time series for climate divisions in Alaska for 1925-2015. Designed for NOAA climate monitoring applications, these new series build upon the divisional data of Bieniek et al. (2014) through the inclusion of additional observing stations, temperature bias adjustments, supplemental temperature elements, and enhanced computational techniques (i.e., climatologically aided interpolation). The new NOAA series are in general agreement with Bieniek et al. (2014), differences being attributable to the underlying methods used to compute divisional averages in each dataset. Trends in minimum temperature are significant in most divisions whereas trends in maximum temperature are generally not significant in the eastern third of the state. Likewise, the statewide rate of warming in minimum temperature (0.158°C dec-1) is roughly 50% larger than that of maximum temperature (0.101 °C dec-1). Trends in precipitation are not significant for most divisions or for the state as a whole

    Breast MRI: guidelines from the European Society of Breast Imaging

    Get PDF
    The aim of breast MRI is to obtain a reliable evaluation of any lesion within the breast. It is currently always used as an adjunct to the standard diagnostic procedures of the breast, i.e., clinical examination, mammography and ultrasound. Whereas the sensitivity of breast MRI is usually very high, specificity—as in all breast imaging modalities—depends on many factors such as reader expertise, use of adequate techniques and composition of the patient cohorts. Since breast MRI will always yield MR-only visible questionable lesions that require an MR-guided intervention for clarification, MRI should only be offered by institutions that can also offer a MRI-guided breast biopsy or that are in close contact with a site that can perform this type of biopsy for them. Radiologists involved in breast imaging should ensure that they have a thorough knowledge of the MRI techniques that are necessary for breast imaging, that they know how to evaluate a breast MRI using the ACR BI-RADS MRI lexicon, and most important, when to perform breast MRI. This manuscript provides guidelines on the current best practice for the use of breast MRI, and the methods to be used, from the European Society of Breast Imaging (EUSOBI)

    Electrical conduction by interface states in semiconductor heterojunctions

    Full text link
    Electrical conduction in semiconductor heterojunctions containing defect states in the interface region is studied. As the classical drift-diffusion mechanism cannot in any case explain electrical conduction in semiconductor heterojunctions, tunnelling involving interface states is often considered as a possible conduction path. A theoretical treatment is made where defect states in the interface region with a continuous energy distribution are included. Electrical conduction through this defect band then allows the transit of electrons from the conduction band of one semiconductor to the valence band of the second component. The analysis is initiated by electrical measurements on n-CdS/p-CdTe heterojunctions obtained by chemical vapour deposition of CdS on (111) oriented CdTe single crystals, for which current--voltage and capacitance--frequency results are shown. The theoretical analysis is based on the numerical resolution of Poisson's equation and the continuity equations of electrons, holes and defect states, where a current component corresponding to the defect band conduction is explicitly included. Comparison with the experimental curves shows that this formalism yields an efficient tool to model the conduction process through the interface region. It also allows us to determine critical values of the physical parameters when a particular step in the conduction mechanism becomes dominant
    corecore