55,173 research outputs found

    Visualization of the homogeneous charge compression ignition/controlled autoignition combustion process using two-dimensional planar laser-induced fluorescence imaging of formaldehyde

    Get PDF
    The paper reports an investigation into the HCCI/CAI combustion process using the two-dimensional PLIF technique. The PLIF of formaldehyde formed during the low-temperature reactions of HCCI/CAI combustion was exciting by a tunable dye laser at 355nm wavelength and detected by a gated ICCD camera. Times and locations of the two-stage autoignition of HCCI/CAI combustion were observed in a single cylinder optical engine for several fuel blends mixed with n-heptane and iso-octane. The results show, when pure n-heptane was used, the initial formation of formaldehyde and its subsequent burning were closely related to the start of the low temperature heat release stage and the start of the main heat release stage of HCCI combustion respectively. Meanwhile, it was found that the formation of formaldehyde was more affected by the charge temperature than by the fuel concentration. But its subsequent burning or the start of main heat release combustion toke place at those areas where both the fuel concentration and the charge temperature were sufficient high. As a result, it was found that the presence of stratified residual gases affected both the spatial location and the temporal site of autoignition in a HCCI/CAI combustion engine. All studied fuels were found having similar formaldehyde formation timings with n-heptane. This means that the presence of iso-octane did not affect the start of low temperature reactions apparently. However, the heat release during low temperature reaction was significantly reduced with the presence of iso-octane in the studied fuels. In addition, the presence of iso-octane retarded the start of the main combustion stage

    The surface and inner temperatures of magnetars

    Full text link
    Assuming that the timescale of the magnetic field decay is approximately equal to that of the stellar cooling via neutrino emission, we obtain a one-to-one relationship between the effective surface thermal temperature and the inner temperature. The ratio of the effective neutrino luminosity to the effective X-ray luminosity decreases with decaying magnetic field.Comment: 3 Pages, 3 Figures, Published in IAU Symposium, 2013, V.291 p.386-388. 2013IAU Symposiu

    Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer

    Full text link
    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.Comment: 9 figures, corrected typo

    Leveraging local identity-by-descent increases the power of case/control GWAS with related individuals

    Full text link
    Large case/control Genome-Wide Association Studies (GWAS) often include groups of related individuals with known relationships. When testing for associations at a given locus, current methods incorporate only the familial relationships between individuals. Here, we introduce the chromosome-based Quasi Likelihood Score (cQLS) statistic that incorporates local Identity-By-Descent (IBD) to increase the power to detect associations. In studies robust to population stratification, such as those with case/control sibling pairs, simulations show that the study power can be increased by over 50%. In our example, a GWAS examining late-onset Alzheimer's disease, the pp-values among the most strongly associated SNPs in the APOE gene tend to decrease, with the smallest pp-value decreasing from 1.23×1081.23\times10^{-8} to 7.70×1097.70\times 10^{-9}. Furthermore, as a part of our simulations, we reevaluate our expectations about the use of families in GWAS. We show that, although adding only half as many unique chromosomes, genotyping affected siblings is more efficient than genotyping randomly ascertained cases. We also show that genotyping cases with a family history of disease will be less beneficial when searching for SNPs with smaller effect sizes.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS715 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A general comparison theorem for 1-dimensional anticipated BSDEs

    Full text link
    Anticipated backward stochastic differential equation (ABSDE) studied the first time in 2007 is a new type of stochastic differential equations. In this paper, we establish a general comparison theorem for 1-dimensional ABSDEs with the generators depending on the anticipated term of ZZ.Comment: 8 page

    Stable Heteronuclear Few-Atom Bound States in Mixed Dimensions

    Full text link
    We study few-body problems in mixed dimensions with N2N \ge 2 heavy atoms trapped individually in parallel one-dimensional tubes or two-dimensional disks, and a single light atom travels freely in three dimensions. By using the Born-Oppenheimer approximation, we find three- and four-body bound states for a broad region of heavy-light atom scattering length combinations. Specifically, the existence of trimer and tetramer states persist to negative scattering lengths regime, where no two-body bound state is present. These few-body bound states are analogous to the Efimov states in three dimensions, but are stable against three-body recombination due to geometric separation. In addition, we find that the binding energy of the ground trimer and tetramer state reaches its maximum value when the scattering lengths are comparable to the separation between the low-dimensional traps. This resonant behavior is a unique feature for the few-body bound states in mixed dimensions.Comment: Extended version with 14 pages and 14 figure

    Geometry of unsteady fluid transport during fluid–structure interactions

    Get PDF
    We describe the application of tools from dynamical systems to define and quantify the unsteady fluid transport that occurs during fluid–structure interactions and in unsteady recirculating flows. The properties of Lagrangian coherent structures (LCS) are used to enable analysis of flows with arbitrary time-dependence, thereby extending previous analytical results for steady and time-periodic flows. The LCS kinematics are used to formulate a unique, physically motivated definition for fluid exchange surfaces and transport lobes in the flow. The methods are applied to numerical simulations of two-dimensional flow past a circular cylinder at a Reynolds number of 200; and to measurements of a freely swimming organism, the Aurelia aurita jellyfish. The former flow provides a canonical system in which to compare the present geometrical analysis with classical, Eulerian (e.g. vortex shedding) perspectives of fluid–structure interactions. The latter flow is used to deduce the physical coupling that exists between mass and momentum transport during self-propulsion. In both cases, the present methods reveal a well-defined, unsteady recirculation zone that is not apparent in the corresponding velocity or vorticity fields. Transport rates between the ambient flow and the recirculation zone are computed for both flows. Comparison of fluid transport geometry for the cylinder crossflow and the self-propelled swimmer within the context of existing theory for two-dimensional lobe dynamics enables qualitative localization of flow three-dimensionality based on the planar measurements. Benefits and limitations of the implemented methods are discussed, and some potential applications for flow control, unsteady propulsion, and biological fluid dynamics are proposed

    Analysis of the Cambodian bagnet ("dai") fishery data

    Get PDF
    This report summarises general and detailed features of catches from the bagnet ("dai") fishery in Cambodia between 1995 and 1999, as monitored by the MRC/DoF/DANIDA Management of the Freshwater Capture Fisheries Project (MFCFP) in Phnom Penh.Fishery data, Cambodia,
    corecore