13 research outputs found
NOTUM from Apc-mutant cells biases clonal competition to initiate cancer
The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer
Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk
Laminin alpha 5 is Necessary for Mammary Epithelial Growth and Function by Maintaining Luminal Epithelial Cell Identity
ABSTRACT Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we demonstrate that expression of distinct laminin α-isoforms by luminal and basal mammary epithelial cells enforces lineage identity that is necessary for normal mammary gland growth and function. Laminin α5 (LMα5) is mainly expressed by the luminal epithelial cells, and it is necessary for pubertal mammary gland growth, pregnancy induced gland remodeling, and for alveolar function. Adhesion to LMα5 containing laminin promotes luminal traits in both luminal and basal epithelial cells, and reduces progenitor activity of basal epithelial cells. Mechanistically, we show that Lama5 loss interferes with differentiation of hormone receptor positive luminal cells, which results in reduced Wnt4 expression and defective crosstalk between luminal and basal epithelial cells during gland remodeling. Our results reveal a novel BM-mediated mechanism, which regulates mammary gland remodeling and function via specification of luminal epithelial cells
Golgi organization is a determinant of stem cell function in the small intestine
Cell-to-cell signalling between niche and stem cells regulates tissue regeneration. While the identity of many mediating factors is known, it is largely unknown whether stem cells optimize their receptiveness to niche signals according to the niche organization. Here, we show that Lgr5+ small intestinal stem cells (ISCs) regulate the morphology and orientation of their secretory apparatus to match the niche architecture, and to increase transport efficiency of niche signal receptors. Unlike the progenitor cells lacking lateral niche contacts, ISCs orient Golgi apparatus laterally towards Paneth cells of the epithelial niche, and divide Golgi into multiple stacks reflecting the number of Paneth cell contacts. Stem cells with a higher number of lateral Golgi transported Epidermal growth factor receptor (Egfr) with a higher efficiency than cells with one Golgi. The lateral Golgi orientation and enhanced Egfr transport required A-kinase anchor protein 9 (Akap9), and was necessary for normal regenerative capacity in vitro . Moreover, reduced Akap9 in aged ISCs renders ISCs insensitive to niche-dependent modulation of Golgi stack number and transport efficiency. Our results reveal stem cell-specific Golgi complex configuration that facilitates efficient niche signal reception and tissue regeneration, which is compromised in the aged epithelium
