171 research outputs found
The energy dependence of flow in Ni induced collisions from 400 to 1970A MeV
We study the energy dependence of collective (hydrodynamic-like) nuclear
matter flow in 400-1970 A MeV Ni+Au and 1000-1970 A MeV Ni+Cu reactions. The
flow increases with energy, reaches a maximum, and then gradually decreases at
higher energies. A way of comparing the energy dependence of flow values for
different projectile-target mass combinations is introduced, which demonstrates
a common scaling behaviour among flow values from different systems.Comment: 12 pages, 3 figures. Submitted to Physical Review Letter
Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity
The role of ATP-binding Cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of Lipoprotein Lipase (LPL).As both ABCG1 and LPL are expressed in adipose tissue, we hypothesize that ABCG1 is implicated in adipocyte TG storage and could be then a major actor in adipose tissue fat accumulation.Silencing of Abcg1 expression by RNAi in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during initial phase of differentiation. Generation of stable Abcg1 Knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of Pparγ expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 SNPs (rs1893590 (A/C) and rs1378577 (T/G)) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with an increased PPARγ expression and adiposity concomitant to an increased fat mass and BMI (haplotype AT>GC). The critical role of ABCG1 regarding obesity was further confirmed in independent populations of severe obese and diabetic obese individuals.For the first time, this study identifies a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity
Body composition changes after laparoscopic adjustable gastric banding: what is the role of -174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy?
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
The Acute Phase Protein Serum Amyloid A Induces Lipolysis and Inflammation in Human Adipocytes through Distinct Pathways
Background: The acute phase response (APR) is characterized by alterations in lipid and glucose metabolism leading to an increased delivery of energy substrates. In adipocytes, there is a coordinated decrease in Free Fatty acids (FFAs) and glucose storage, in addition to an increase in FFAs mobilization. Serum Amyloid A (SAA) is an acute phase protein mainly associated with High Density Lipoproteins (HDL). We hypothesized that enrichment of HDL with SAA, during the APR, could be implicated in the metabolic changes occurring in adipocytes. Methodology/Principal Findings: In vitro differentiated human adipocytes (hMADS) were treated with SAA enriched HDL or recombinant SAA and the metabolic phenotype of the cells analyzed. In hMADS, SAA induces an increased lipolysis through an ERK dependent pathway. At the molecular level, SAA represses PPARc2, C/EBPa and SREBP-1c gene expression, three transcription factors involved in adipocyte differentiation or lipid synthesis. In addition, the activation of the NF-kB pathway by SAA leads to the induction of pro-inflammatory cytokines and chemokines, as in the case of immune cells. These latter findings were replicated in freshly isolated mature human adipocytes. Conclusions/Significance: Besides its well-characterized role in cholesterol metabolism, SAA has direct metabolic effects on human adipocytes. These metabolic changes could be at least partly responsible for alterations of adipocyte metabolism observed during the APR as well as during pathophysiological conditions such as obesity and conditions leading to insuli
Establishment of a Transgenic Mouse Model Specifically Expressing Human Serum Amyloid A in Adipose Tissue
Obesity and obesity co-morbidities are associated with a low grade inflammation and elevated serum levels of acute phase proteins, including serum amyloid A (SAA). In the non-acute phase in humans, adipocytes are major producers of SAA but the function of adipocyte-derived SAA is unknown. To clarify the role of adipocyte-derived SAA, a transgenic mouse model expressing human SAA1 (hSAA) in adipocytes was established. hSAA expression was analysed using real-time PCR analysis. Male animals were challenged with a high fat (HF) diet. Plasma samples were subjected to fast protein liquid chromatography (FPLC) separation. hSAA, cholesterol and triglyceride content were measured in plasma and in FPLC fractions. Real-time PCR analysis confirmed an adipose tissue-specific hSAA gene expression. Moreover, the hSAA gene expression was not influenced by HF diet. However, hSAA plasma levels in HF fed animals (37.7±4.0 µg/mL, n = 7) were increased compared to those in normal chow fed animals (4.8±0.5 µg/mL, n = 10; p<0.001), and plasma levels in the two groups were in the same ranges as in obese and lean human subjects, respectively. In FPLC separated plasma samples, the concentration of hSAA peaked in high-density lipoprotein (HDL) containing fractions. In addition, cholesterol distribution over the different lipoprotein subfractions as assessed by FPLC analysis was similar within the two experimental groups. The established transgenic mouse model demonstrates that adipose tissue produced hSAA enters the circulation, resulting in elevated plasma levels of hSAA. This new model will enable further studies of metabolic effects of adipose tissue-derived SAA
Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss
Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition
AIMS/HYPOTHESIS: The acute-phase proteins, serum amyloid As (SAA), are precursors of amyloid A, involved in the pathogenesis of AA amyloidosis. This work started with the characterisation of systemic AA amyloidosis concurrent with SAA overexpression in the subcutaneous white adipose tissue (sWAT) of an obese patient with a leptin receptor deficiency. In the present study a series of histopathological, cellular and gene expression studies was performed to assess the importance of SAA in common obesity and its possible production by mature adipocytes. MATERIALS AND METHODS: Gene expression profiling was performed in the sWAT of two extremely obese patients with a leptin receptor deficiency. Levels of the mRNAs of the different SAA isoforms were quantified in sWAT cellular fractions from lean subjects and from obese subjects before and after a very-low-calorie diet. These values were subsequently compared with serum levels of SAA in these individuals. In addition, histopathological analyses of sWAT were performed in lean and obese subjects. RESULTS: In sWAT, the expression of SAA is more than 20-fold higher in mature adipocytes than in the cells of the stroma vascular fraction (p<0.01). Levels of SAA mRNA expression and circulating levels of the protein are sixfold (p<0.001) and 3.5-fold (p<0.01) higher in obese subjects than in lean subjects, respectively. In lean subjects, 5% of adipocytes are immunoreactive for SAA, whereas the corresponding value is greater than 20% in obese subjects. Caloric restriction results in decreases of 45-75% in levels of the transcripts for the SAA isoforms and in circulating levels of the protein. CONCLUSIONS/INTERPRETATION: The results of the present study indicate that SAA is expressed by sWAT, and its production at this site is regulated by nutritional status. If amyloidosis is seen in the context of obesity, it is possible that production of SAA by adipocytes could be a contributory factor
Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity
Background: Middle age obesity is recognized as a risk factor for Alzheimer’s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings: To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance: Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-a and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokin
Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients
- …
