863 research outputs found
Free energy of a folded polymer under cylindrical confinement
Monte Carlo computer simulations are used to study the conformational free
energy of a folded polymer confined to a long cylindrical tube. The polymer is
modeled as a hard-sphere chain. Its conformational free energy is measured
as a function of , the end-to-end distance of the polymer. In the case
of a flexible linear polymer, is a linear function in the folded
regime with a gradient that scales as for a tube of diameter and a polymer of length . This
is close to the prediction obtained from simple scaling
arguments. The discrepancy is due in part to finite-size effects associated
with the de-Gennes blob model. A similar discrepancy was observed for the
folding of a single arm of a three-arm star polymer. We also examine
backfolding of a semiflexible polymer of persistence length in the classic
Odijk regime. In the overlap regime, the derivative scales , which is close to the prediction obtained from a scaling argument that treats
interactions between deflection segments at the second virial level. In
addition, the measured free energy cost of forming a hairpin turn is
quantitatively consistent with a recent theoretical calculation. Finally, we
examine the scaling of for a confined semiflexible chain in the
presence of an S-loop composed of two hairpins. While the predicted scaling of
the free energy gradient is the same as that for a single hairpin, we observe a
scaling of . Thus, the quantitative
discrepancy between this measurement and the predicted scaling is somewhat
greater for S-loops than for single hairpins.Comment: 17 papes, 12 figure
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Structured additive regression provides a general framework for complex
Gaussian and non-Gaussian regression models, with predictors comprising
arbitrary combinations of nonlinear functions and surfaces, spatial effects,
varying coefficients, random effects and further regression terms. The large
flexibility of structured additive regression makes function selection a
challenging and important task, aiming at (1) selecting the relevant
covariates, (2) choosing an appropriate and parsimonious representation of the
impact of covariates on the predictor and (3) determining the required
interactions. We propose a spike-and-slab prior structure for function
selection that allows to include or exclude single coefficients as well as
blocks of coefficients representing specific model terms. A novel
multiplicative parameter expansion is required to obtain good mixing and
convergence properties in a Markov chain Monte Carlo simulation approach and is
shown to induce desirable shrinkage properties. In simulation studies and with
(real) benchmark classification data, we investigate sensitivity to
hyperparameter settings and compare performance to competitors. The flexibility
and applicability of our approach are demonstrated in an additive piecewise
exponential model with time-varying effects for right-censored survival times
of intensive care patients with sepsis. Geoadditive and additive mixed logit
model applications are discussed in an extensive appendix
Fluctuations of radiation from a chaotic laser below threshold
Radiation from a chaotic cavity filled with gain medium is considered. A set
of coupled equations describing the photon density and the population of gain
medium is proposed and solved. The spectral distribution and fluctuations of
the radiation are found. The full noise is a result of a competition between
positive correlations of photons with equal frequencies (due to stimulated
emission and chaotic scattering) which increase fluctuations, and a suppression
due to interaction with a gain medium which leads to negative correlations
between photons. The latter effect is responsible for a pronounced suppression
of the photonic noise as compared to the linear theory predictions.Comment: 7 pages, 5 figures; expanded version, to appear in Phys. Rev.
Freezing by Monte Carlo Phase-Switch
We describe a Monte Carlo procedure which allows sampling of the disjoint
configuration spaces associated with crystalline and fluid phases, within a
single simulation. The method utilises biased sampling techniques to enhance
the probabilities of gateway states (in each phase) which are such that a
global switch (to the other phase) can be implemented. Equilibrium
freezing-point parameters can be determined directly; statistical uncertainties
prescribed transparently; and finite-size effects quantified systematically.
The method is potentially quite general; we apply it to the freezing of hard
spheres.Comment: 5 pages, 2 figure
Bottom mixed layer oxygen dynamics in the Celtic Sea
The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
- …
