23,269 research outputs found
Coherence and Josephson oscillations between two tunnel-coupled one-dimensional atomic quasicondensates at finite temperature
We revisit the theory of tunnel-coupled atomic quasicondensates in
double-well elongated traps at finite temperatures. Using the
functional-integral approach, we calculate the relative-phase correlation
function beyond the harmonic limit of small fluctuations of the relative phase
and its conjugate relative-density variable. We show that the thermal
fluctuations of the relative phase between the two quasicondensates decrease
the frequency of Josephson oscillations and even wash out these oscillations
for small values of the tunnel coupling.Comment: revtex4, 4 figures (.eps
Gapless Hartree-Fock-Bogoliubov Approximation for Bose Gases
A dilute Bose system with Bose-Einstein condensate is considered. It is shown
that the Hartree-Fock-Bogolubov approximation can be made both conserving as
well as gapless. This is achieved by taking into account all physical
normalization conditions, that is, the normalization condition for the
condensed particles and that for the total number of particles. Two Lagrange
multipliers, introduced for preserving these normalization conditions, make the
consideration completely self-consistent.Comment: Latex file, 22 pages, 2 figure
Theoretical Raman fingerprints of -, -, and -graphyne
The novel graphene allotropes -, -, and -graphyne
derive from graphene by insertion of acetylenic groups. The three graphynes are
the only members of the graphyne family with the same hexagonal symmetry as
graphene itself, which has as a consequence similarity in their electronic and
vibrational properties. Here, we study the electronic band structure, phonon
dispersion, and Raman spectra of these graphynes within an
\textit{ab-initio}-based non-orthogonal tight-binding model. In particular, the
predicted Raman spectra exhibit a few intense resonant Raman lines, which can
be used for identification of the three graphynes by their Raman spectra for
future applications in nanoelectronics
From Popov-Fedotov trick to universal fermionization
We show that Popov-Fedotov trick of mapping spin-1/2 lattice systems on
two-component fermions with imaginary chemical potential readily generalizes to
bosons with a fixed (but not limited) maximal site occupation number, as well
as to fermionic Hamiltonians with various constraints on the site Fock states.
In a general case, the mapping---fermionization---is on multi-component
fermions with many-body non-Hermitian interactions. Additionally, the
fermionization approach allows one to convert large many-body couplings into
single-particle energies, rendering the diagrammatic series free of large
expansion parameters; the latter is essential for the efficiency and
convergence of the diagrammatic Monte Carlo method.Comment: 4 pages, no figures (v2 contains some improvements; the most
important one is the generic complex chemical potential trick for
spins/bosons
- …
