23,269 research outputs found

    Coherence and Josephson oscillations between two tunnel-coupled one-dimensional atomic quasicondensates at finite temperature

    Full text link
    We revisit the theory of tunnel-coupled atomic quasicondensates in double-well elongated traps at finite temperatures. Using the functional-integral approach, we calculate the relative-phase correlation function beyond the harmonic limit of small fluctuations of the relative phase and its conjugate relative-density variable. We show that the thermal fluctuations of the relative phase between the two quasicondensates decrease the frequency of Josephson oscillations and even wash out these oscillations for small values of the tunnel coupling.Comment: revtex4, 4 figures (.eps

    Gapless Hartree-Fock-Bogoliubov Approximation for Bose Gases

    Full text link
    A dilute Bose system with Bose-Einstein condensate is considered. It is shown that the Hartree-Fock-Bogolubov approximation can be made both conserving as well as gapless. This is achieved by taking into account all physical normalization conditions, that is, the normalization condition for the condensed particles and that for the total number of particles. Two Lagrange multipliers, introduced for preserving these normalization conditions, make the consideration completely self-consistent.Comment: Latex file, 22 pages, 2 figure

    Theoretical Raman fingerprints of α\alpha-, β\beta-, and γ\gamma-graphyne

    Full text link
    The novel graphene allotropes α\alpha-, β\beta-, and γ\gamma-graphyne derive from graphene by insertion of acetylenic groups. The three graphynes are the only members of the graphyne family with the same hexagonal symmetry as graphene itself, which has as a consequence similarity in their electronic and vibrational properties. Here, we study the electronic band structure, phonon dispersion, and Raman spectra of these graphynes within an \textit{ab-initio}-based non-orthogonal tight-binding model. In particular, the predicted Raman spectra exhibit a few intense resonant Raman lines, which can be used for identification of the three graphynes by their Raman spectra for future applications in nanoelectronics

    From Popov-Fedotov trick to universal fermionization

    Full text link
    We show that Popov-Fedotov trick of mapping spin-1/2 lattice systems on two-component fermions with imaginary chemical potential readily generalizes to bosons with a fixed (but not limited) maximal site occupation number, as well as to fermionic Hamiltonians with various constraints on the site Fock states. In a general case, the mapping---fermionization---is on multi-component fermions with many-body non-Hermitian interactions. Additionally, the fermionization approach allows one to convert large many-body couplings into single-particle energies, rendering the diagrammatic series free of large expansion parameters; the latter is essential for the efficiency and convergence of the diagrammatic Monte Carlo method.Comment: 4 pages, no figures (v2 contains some improvements; the most important one is the generic complex chemical potential trick for spins/bosons
    corecore