713 research outputs found

    Mid-gut ACTH-secreting neuroendocrine tumor unmasked with (18)F-dihydroxyphenylalanine-positron emission tomography.

    Get PDF
    Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and (18)F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. (18)F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. LEARNING POINTS: Uncontrolled high cortisol levels in EAS can be lethal if untreated.Surgical excision is the keystone of NETs treatment, thus tumor localization is crucial.Most cases of EAS are caused by NETs, which are located mainly in the lungs. However, small gut NETs are elusive to conventional imaging and require metabolic imaging for detection.FDG-PET, based on tumor high metabolic rate, may not detect NETs that have low mitotic activity. SSRS may also fail, due to absent or low concentration of SST2, which may be down regulated by excess cortisol.F-DOPA-PET, based on amine-precursor uptake, can be a useful method to localize the occult source of ACTH in EAS when other methods have failed

    Attacks on quantum key distribution protocols that employ non-ITS authentication

    Full text link
    We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.Comment: 34 page

    Breeding a barley resistant to leaf disease

    Get PDF
    In the last few years the Department of Agriculture has begun a programme to produce brley varieties resistant to the leaf diseases, scald and net blotch. These diseases cause substantial losses that may not be apparent to an individual farmer

    Keeping ahead of powdery mildew in barley

    Get PDF
    Powdery mildew is one of the world\u27s most significant barley diseases. In Australia, and more particularly Western Australia, its importance has been under-rated, and only recently has interest in this disease emerged. Powdery mildew was widespread throughout Western Australia\u27s southern cereal growing areas in 1983. Only a prolonged dry period in August and early September of that year prevented possible large-scale crop losses. Similar outbreaks occurred in 1984. While some barley varieties are resistant to infection, the use of fungicides, particularly seed dressings, can minimise further infection

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)

    Role of regional wetland emissions in atmospheric methane variability

    Get PDF
    Atmospheric methane (CH4) accounts for ~20% of the total direct anthropogenic radiative forcing by long-lived greenhouse gases. Surface observations show a pause (1999-2006) followed by a resumption in CH4 growth, which remain largely unexplained. Using a land surface model, we estimate wetland CH4 emissions from 1993 to 2014 and study the regional contributions to changes in atmospheric CH4. Atmospheric model simulations using these emissions, together with other sources, compare well with surface and satellite CH4 data. Modelled global wetland emissions vary by ±3%/yr (σ=4.8 Tg), mainly due to precipitation-induced changes in wetland area, but the integrated effect makes only a small contribution to the pause in CH4 growth from 1999 to 2006. Increasing temperature, which increases wetland area, drives a long-term trend in wetland CH4 emissions of +0.2%/yr (1999 to 2014). The increased growth post-2006 was partly caused by increased wetland emissions (+3%), mainly from Tropical Asia, Sourthern Africa and Australia

    Human impact parameterizations in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    Get PDF
    Human activities have a profound influence on river discharge, hydrological extremes, and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of the mean, high, and low flows. The analysis is performed for 471 gauging stations across the globe and for the period 1971-2010. We find that the inclusion of HIP improves the performance of GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across GHMs, although the level of improvement and reasons for improvement vary greatly by GHM. The inclusion of HIP leads to a significant decrease in the bias of long-term mean monthly discharge in 36-73% of the studied catchments, and an improvement in modelled hydrological variability in 31-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in simulated high-flows, it can lead to either increases or decreases in low-flows. This is due to the relative importance of the timing of return flows and reservoir operations and their associated uncertainties. Even with the inclusion of HIP, we find that model performance still not optimal. This highlights the need for further research linking the human management and hydrological domains, especially in those areas with a dominant human impact. The large variation in performance between GHMs, regions, and performance indicators, calls for a careful selection of GHMs, model components, and evaluation metrics in future model applications

    Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Get PDF
    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used

    Groundwater depletion embedded in international food trade

    Get PDF
    Recent hydrological modelling1 and Earth observations2,3 have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation1,2,4, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, cropspecific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products
    corecore