1,234 research outputs found

    Constraining phases of quark matter with studies of r-mode damping in neutron stars

    Full text link
    The r-mode instability in rotating compact stars is used to constrain the phase of matter at high density. The color-flavor-locked phase with kaon condensation (CFL-K0) and without (CFL) is considered in the temperature range 10^8K < T <10^{11} K. While the bulk viscosity in either phase is only effective at damping the r-mode at temperatures T > 10^{11} K, the shear viscosity in the CFL-K0 phase is the only effective damping agent all the way down to temperatures T > 10^8 K characteristic of cooling neutron stars. However, it cannot keep the star from becoming unstable to gravitational wave emission for rotation frequencies f ~ 56-11 Hz at T ~ 10^8-10^9 K. Stars composed almost entirely of CFL or CFL-K0 matter are ruled out by observation of rapidly rotating neutron stars, indicating that dissipation at the quark-hadron interface or nuclear crust interface must play a key role in damping the instability.Comment: 8 pages, 2 figure

    Ensembles of probability estimation trees for customer churn prediction

    Get PDF
    Customer churn prediction is one of the most, important elements tents of a company's Customer Relationship Management, (CRM) strategy In tins study, two strategies are investigated to increase the lift. performance of ensemble classification models, i.e (1) using probability estimation trees (PETs) instead of standard decision trees as base classifiers; and (n) implementing alternative fusion rules based on lift weights lot the combination of ensemble member's outputs Experiments ale conducted lot font popular ensemble strategics on five real-life chin n data sets In general, the results demonstrate how lift performance can be substantially improved by using alternative base classifiers and fusion tides However: the effect vanes lot the (Idol cut ensemble strategies lit particular, the results indicate an increase of lift performance of (1) Bagging by implementing C4 4 base classifiets. (n) the Random Subspace Method (RSM) by using lift-weighted fusion rules, and (in) AdaBoost, by implementing both

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199

    Phase Transition in the Number Partitioning Problem

    Full text link
    Number partitioning is an NP-complete problem of combinatorial optimization. A statistical mechanics analysis reveals the existence of a phase transition that separates the easy from the hard to solve instances and that reflects the pseudo-polynomiality of number partitioning. The phase diagram and the value of the typical ground state energy are calculated.Comment: minor changes (references, typos and discussion of results

    Background Independent Quantum Mechanics, Metric of Quantum States, and Gravity: A Comprehensive Perspective

    Full text link
    This paper presents a comprehensive perspective of the metric of quantum states with a focus on the background independent metric structures. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kahler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space with the limit when Planck constant vanishes, we obtain the metric of quantum states in the configuration space without imposing this limiting condition. Here, Planck constant is absorbed in the quantity like Bohr radii. While exploring the metric structure associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr radii.Comment: 25 Pages;journal reference added:Published in- Int. J. Theor. Phys. 46 (2007) 3216-3229. References revise

    Randomized Reference Classifier with Gaussian Distribution and Soft Confusion Matrix Applied to the Improving Weak Classifiers

    Full text link
    In this paper, an issue of building the RRC model using probability distributions other than beta distribution is addressed. More precisely, in this paper, we propose to build the RRR model using the truncated normal distribution. Heuristic procedures for expected value and the variance of the truncated-normal distribution are also proposed. The proposed approach is tested using SCM-based model for testing the consequences of applying the truncated normal distribution in the RRC model. The experimental evaluation is performed using four different base classifiers and seven quality measures. The results showed that the proposed approach is comparable to the RRC model built using beta distribution. What is more, for some base classifiers, the truncated-normal-based SCM algorithm turned out to be better at discovering objects coming from minority classes.Comment: arXiv admin note: text overlap with arXiv:1901.0882

    Differential rotation of nonlinear r-modes

    Full text link
    Differential rotation of r-modes is investigated within the nonlinear theory up to second order in the mode amplitude in the case of a slowly-rotating, Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the linear r-mode, which represents differential rotation that produces large scale drifts of fluid elements along stellar latitudes. This solution includes a piece induced by first-order quantities and another one which is a pure second-order effect. Since the latter is stratified on cylinders, it cannot cancel differential rotation induced by first-order quantities, which is not stratified on cylinders. It is shown that, unlikely the situation in the linearized theory, r-modes do not preserve vorticity of fluid elements at second-order. It is also shown that the physical angular momentum and energy of the perturbation are, in general, different from the corresponding canonical quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction and Conclusions, references updated; to appear in Phys. Rev.

    A numerical study of the r-mode instability of rapidly rotating nascent neutron stars

    Full text link
    The first results of numerical analysis of classical r-modes of {\it rapidly} rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity are numerically solved without the slow rotation approximation. A critical curve of gravitational wave emission induced instability which restricts the rotational frequencies of hot young neutron stars is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the `evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning-down proceed. Rotational frequencies of 1.4M1.4M_{\odot} stars suffering from this instability decrease to around 100Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000

    Fluctuation, time-correlation function and geometric Phase

    Get PDF
    We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge
    corecore