6,522 research outputs found
Measuring Thickness and Pretilt in Reflective Vertically Aligned Nematic Liquid Crystal Displays
Pretilt angle is a parameter of the utmost importance in the ultimate performance of vertically-aligned negative nematic LC displays. When these devices work in reflective mode, as is the LCOS microdisplays, accurate measurement of pretilt angles becomes a difficult problem, since usual experimental setups based on retardation of the polarization components of the impinging light are proportional to the product effective birefringence (neff - no) times thickness, and any attempt to separate these variables is cancelled out by symmetry. This work shows a relatively simple method capable of separating both variables. An experimental setup specifically aimed at vertically aligned reflective cells has been prepared. At the same time, a simulation model has been developed taking into account the properties of actual reflective displays. Comparison between experimental and theoretical results shows some discrepancies that can be explained assuming that the LC profile contains a residual twist. Including that twist in the model, an excellent agreement between theory and experiment has been achieved. Matching of simulations and measurements yields to the separate determination of pretilt angle and thickness and gives good estimates for the residual twist angle
V-Shape Liquid Crystal-Based Retromodulator Air to Ground Optical Communications
This paper describes the use of a 2D liquid crystal retro-modulator as a free space, wireless, optical link. The retro-modulator is made up of a retro-reflecting cornercube onto which 2 cascaded V-shape smectics liquid crystal modulators are mounted. The communication link differs with respect to more conventional optical links in not using amplitude (nor frequency) modulation, but instead state-of-polarisation (SOP) modulation known as Polarisation Shift Keying (PolSK). PolSK has the advantage over amplitude modulation, that it is less sensitive to changes in the visibility of the atmosphere, and increases inherently the bandwidth of the link. The implementation of PolSK both in liquid crystal based and in retro-modulated communication are novelties
Recommended from our members
Discovery of SiCSi in IRC+10216: A Missing Link Between Gas and Dust Carriers of SiC Bonds
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30 m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emission arises from a region of 6. in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a Si-C bond in the dust Formation zone and certainly both play a key role in the Formation of SiC dust grains.spanish MINECO AYA2009-07304, AYA2012-32032, CSD2009-00038ERC ERC-2013-SyGNASA NNX13AE59G, NANOCOSMOS, 610256Chemistr
Contribution of thirdhand smoke to overall tobacco smoke exposure in pediatric patients: study protocol.
BackgroundThirdhand smoke (THS) is the persistent residue resulting from secondhand smoke (SHS) that accumulates in dust, objects, and on surfaces in homes where tobacco has been used, and is reemitted into air. Very little is known about the extent to which THS contributes to children's overall tobacco smoke exposure (OTS) levels, defined as their combined THS and SHS exposure. Even less is known about the effect of OTS and THS on children's health. This project will examine how different home smoking behaviors contribute to THS and OTS and if levels of THS are associated with respiratory illnesses in nonsmoking children.MethodsThis project leverages the experimental design from an ongoing pediatric emergency department-based tobacco cessation trial of caregivers who smoke and their children (NIHR01HD083354). At baseline and follow-up, we will collect urine and handwipe samples from children and samples of dust and air from the homes of smokers who smoke indoors, have smoking bans or who have quit smoking. These samples will be analyzed to examine to what extent THS pollution at home contributes to OTS exposure over and above SHS and to what extent THS continues to persist and contribute to OTS in homes of smokers who have quit or have smoking bans. Targeted and nontargeted chemical analyses of home dust samples will explore which types of THS pollutants are present in homes. Electronic medical record review will examine if THS and OTS levels are associated with child respiratory illness. Additionally, a repository of child and environmental samples will be created.DiscussionThe results of this study will be crucial to help close gaps in our understanding of the types, quantity, and clinical effects of OTS, THS exposure, and THS pollutants in a unique sample of tobacco smoke-exposed ill children and their homes. The potential impact of these findings is substantial, as currently the level of risk in OTS attributable to THS is unknown. This research has the potential to change how we protect children from OTS, by recognizing that SHS and THS exposure needs to be addressed separately and jointly as sources of pollution and exposure.Trial registrationClinicalTrials.gov Identifier: NCT02531594 . Date of registration: August 24, 2015
Rolling quantum dice with a superconducting qubit
One of the key challenges in quantum information is coherently manipulating
the quantum state. However, it is an outstanding question whether control can
be realized with low error. Only gates from the Clifford group -- containing
, , and Hadamard gates -- have been characterized with high
accuracy. Here, we show how the Platonic solids enable implementing and
characterizing larger gate sets. We find that all gates can be implemented with
low error. The results fundamentally imply arbitrary manipulation of the
quantum state can be realized with high precision, providing new practical
possibilities for designing efficient quantum algorithms.Comment: 8 pages, 4 figures, including supplementary materia
X-ray total mass estimate for the nearby relaxed cluster A3571
We constrain the total mass distribution in the cluster A3571, combining
spatially resolved ASCA temperature data with ROSAT imaging data with the
assumption that the cluster is in hydrostatic equilibrium. The total mass
within r_500 (1.7/h_50 Mpc) is M_500 = 7.8[+1.4,-2.2] 10^14/ h_50 Msun at 90%
confidence, 1.1 times smaller than the isothermal estimate. The Navarro, Frenk
& White ``universal profile'' is a good description of the dark matter density
distribution in A3571. The gas density profile is shallower than the dark
matter profile, scaling as r^{-2.1} at large radii, leading to a monotonically
increasing gas mass fraction with radius. Within r_500 the gas mass fraction
reaches a value of f_gas = 0.19[+0.06,-0.03] h_50^{-3/2} (90% confidence
errors). Assuming that this value of f_gas is a lower limit for the the
universal value of the baryon fraction, we estimate the 90% confidence upper
limit of the cosmological matter density to be Omega_m < 0.4.Comment: 10 pages, 4 figures, accepted by Ap
Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the LMC
We have used the infrared Barnes-Evans surface brightness technique to derive
the radii and distances of 34 Galactic Cepheid variables. Radius and distance
results obtained from both versions of the technique are in excellent
agreement. The radii of 28 variables are used to determine the period-radius
relation. This relation is found to have a smaller dispersion than in previous
studies, and is identical to the period-radius relation found by Laney & Stobie
from a completely independent method, a fact which provides persuasive evidence
that the Cepheid period-radius relation is now determined at a very high
confidence level. We use the accurate infrared distances to determine
period-luminosity relations in the V, I, J, H and K passbands from the Galactic
sample of Cepheids. We derive improved slopes of these relations from updated
LMC Cepheid samples and adopt these slopes to obtain accurate absolute
calibrations of the PL relation. By comparing these relations to the ones
defined by the LMC Cepheids, we derive strikingly consistent and precise values
for the LMC distance modulus in each of the passbands which yield a mean value
of DM (LMC) = 18.46 +- 0.02.
Our results show that the infrared Barnes-Evans technique is very insensitive
to both Cepheid metallicity and adopted reddening, and therefore a very
powerful tool to derive accurate distances to nearby galaxies by a direct
application of the technique to their Cepheid variables, rather than by
comparing PL relations of different galaxies, which introduces much more
sensitivity to metallicity and absorption corrections which are usually
difficult to determine.Comment: LaTeX, AASTeX style, 9 Figures, 10 Tables, The Astrophysical Journal
in press (accepted Oct. 14, 1997). Fig. 3 replace
- …
