22 research outputs found
Low Frequency (100-600 MHz) Searches with Axion Cavity Haloscopes
We investigate reentrant and dielectric loaded cavities for the purpose of
extending the range of axion cavity haloscopes to lower masses, below the range
where the Axion Dark Matter eXperiment (ADMX) has already searched. Reentrant
and dielectric loaded cavities were simulated numerically to calculate and
optimize their form factors and quality factors. A prototype reentrant cavity
was built and its measured properties were compared with the simulations. We
estimate the sensitivity of axion dark matter searches using reentrant and
dielectric loaded cavities inserted in the existing ADMX magnet at the
University of Washington and a large magnet being installed at Fermilab.Comment: 33 pages, 24 figure
Search for the Cosmic Axion Background with ADMX
We report the first result of a direct search for a Cosmic
Background CB - a relativistic background of axions that is not dark matter
- performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX).
Conventional haloscope analyses search for a signal with a narrow bandwidth, as
predicted for dark matter, whereas the CB will be broad. We introduce a
novel analysis strategy, which searches for a CB induced daily modulation in
the power measured by the haloscope. Using this, we repurpose data collected to
search for dark matter to set a limit on the axion photon coupling of the CB
originating from dark matter decay in the 800-995 MHz frequency range. We find
that the present sensitivity is limited by fluctuations in the cavity readout
as the instrument scans across dark matter masses. Nevertheless, we demonstrate
that these challenges can be surmounted with the use of superconducting qubits
as single photon counters, and allow ADMX to operate as a telescope searching
for axions emerging from the decay of dark matter. The daily modulation
analysis technique we introduce can be deployed for various broadband RF
signals, such as other forms of a CB or even high-frequency gravitational
waves.Comment: 9 pages, 4 figure
Non-Virialized Axion Search Sensitive to Doppler Effects in the Milky Way Halo
The Axion Dark Matter eXperiment (ADMX) has previously excluded
Dine-Fischler-Srednicki-Zhitnisky (DFSZ) axions between 680-790 MHz under the
assumption that the dark matter is described by the isothermal halo model.
However, the precise nature of the velocity distribution of dark matter is
still unknown, and alternative models have been proposed. We report the results
of a non-virialized axion search over the mass range 2.81-3.31 {\mu}eV,
corresponding to the frequency range 680-800 MHz. This analysis marks the most
sensitive search for non-virialized axions sensitive to Doppler effects in the
Milky Way Halo to date. Accounting for frequency shifts due to the detector's
motion through the Galaxy, we exclude cold flow relic axions with a velocity
dispersion of order 10^-7 c with 95% confidence
Improved receiver noise calibration for ADMX axion search: 4.54 to 5.41 μeV
Axions are a well-motivated candidate for dark matter. The preeminent method to search for axion dark matter is known as the axion haloscope, which makes use of the conversion of axions to photons in a large magnetic field. Because of the weak coupling of axions to photons, however, the expected signal strength is exceptionally small. To increase signal strength, many haloscopes make use of resonant enhancement and high gain amplifiers, while also taking measures to keep receiver noise as low as possible such as the use of dilution refrigerators and ultra-low-noise electronics. In this paper, we derive the theoretical noise model based on the sources of noise found within a typical axion haloscope receiver chain, using the Axion Dark Matter eXperiment (ADMX) as a case study. We present examples of different noise calibration measurements at 1280 MHz taken during ADMX’s most recent data-taking run. These new results shed light on a previously unidentified interaction between the cavity and Josephson Parametric Amplifier as well as provide a better understanding of the systematic uncertainty on the system noise temperature used in the axion search analysis for this data-taking run. Finally, the consistency between the measurements and the detailed model provide suggestions for future improvements within ADMX and other axion haloscopes to reach a lower noise temperature
Low frequency, 100–600 MHz, searches with axion cavity haloscopes
We investigate reentrant and dielectric loaded cavities for the purpose of extending the range of axion cavity haloscopes to lower masses, below the range where the Axion Dark Matter experiment (ADMX) has already searched. Reentrant and dielectric loaded cavities were simulated numerically to calculate and optimize their form factors and quality factors. A prototype reentrant cavity was built and its measured properties were compared with the simulations. We estimate the sensitivity of axion dark matter searches using reentrant and dielectric loaded cavities inserted in the existing ADMX magnet at the University of Washington and a large magnet being installed at Fermilab
Search for invisible axion dark matter in the 3.3-4.2 μeV mass range
We report the results from a haloscope search for axion dark matter in the 3.3-4.2 μeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible"axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals
ADMX axion dark matter bounds around 3.3 μeV with Dine-Fischler-Srednicki-Zhitnitsky discovery ability
We report the results of a QCD axion dark matter search with discovery ability for Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axions using an axion haloscope. Sub-Kelvin noise temperatures are reached with an ultralow noise Josephson parametric amplifier cooled by a dilution refrigerator. This work excludes (with a 90% confidence level) DFSZ axions with masses between 3.27 to 3.34 μeV, assuming a standard halo model with a local energy density of 0.45 GeV/cm3 made up 100% of axions
Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-μeV range with the ORGAN experiment
The standard model axion seesaw Higgs portal inflation (SMASH) model is a well-motivated, self-contained description of particle physics that predicts axion dark matter particles to exist within the mass range of 50 to 200 micro–electron volts. Scanning these masses requires an axion haloscope to operate under a constant magnetic field between 12 and 48 gigahertz. The ORGAN (Oscillating Resonant Group AxioN) experiment (in Perth, Australia) is a microwave cavity axion haloscope that aims to search the majority of the mass range predicted by the SMASH model. Our initial phase 1a scan sets an upper limit on the coupling of axions to two photons of ∣gaγγ∣ ≤ 3 × 10−12per giga–electron volts over the mass range of 63.2 to 67.1 micro–electron volts with 95% confidence interval. This highly sensitive result is sufficient to exclude the well-motivated axion-like particle cogenesis model for dark matter in the searched region.</jats:p
Comparing Instrument Spectral Sensitivity of Dissimilar Electromagnetic Haloscopes to Axion Dark Matter and High Frequency Gravitational Waves
It is known that haloscopes that search for dark matter axions via the axion-photon anomaly are also sensitive to gravitational radiation through the inverse Gertsenshtein effect. Recently this way of searching for high frequency gravitational waves has gained momentum as it has been shown that the strain sensitivity of such detectors, are of the same order of sensitivity to the axion-photon theta angle. Thus, after calculating the sensitivity of a haloscope to an axion signal, we also have calculated the order of magnitude sensitivity to a gravitational wave signal of the same spectral and temporal form. However, it is unlikely that a gravitational wave and an axion signal will be of the same form, since physically the way the signals are generated are completely different. For gravitational wave detection, the spectral strain sensitivity is in units strain per square root Hz, is the natural way to compare the sensitivity of gravitational wave detectors due to its independence on the gravitational wave signal. In this work, we introduce a systematic way to calculate the spectral sensitivity of an axion haloscope, so instrument comparison may be achieved independent of signal assumptions and only depends on the axion to signal transduction sensitivity and noise in the instrument. Thus, the calculation of the spectral sensitivity not only allows the comparison of dissimilar axion detectors independent of signal, but also allows us to compare the order of magnitude gravitational wave sensitivity in terms of spectral strain sensitivity, allowing comparisons to standard gravitational wave detectors based on optical interferometers and resonant-mass technology
Near-quantum limited axion dark matter search with the ORGAN experiment around 26 eV
The latest result from The ORGAN Experiment, an axion haloscope is presented.
This iteration of the experiment operated at millikelvin temperatures using a
flux-driven Josephson parametric amplifier (JPA) for reduced noise, along with
various other upgrades over previous iterations. Covering the ( GHz) mass (frequency) range, this
near-quantum limited phase of ORGAN employs a conducting rod resonator and a
7-T solenoidal magnet to place the most sensitive exclusion limits on
axion-photon coupling in the range to date, with at a 95% confidence level.Comment: 9 pages, 5 figure
