2,609 research outputs found
AMCTD: Adaptive Mobility of Courier nodes in Threshold-optimized DBR Protocol for Underwater Wireless Sensor Networks
In dense underwater sensor networks (UWSN), the major confronts are high
error probability, incessant variation in topology of sensor nodes, and much
energy consumption for data transmission. However, there are some remarkable
applications of UWSN such as management of seabed and oil reservoirs,
exploration of deep sea situation and prevention of aqueous disasters. In order
to accomplish these applications, ignorance of the limitations of acoustic
communications such as high delay and low bandwidth is not feasible. In this
paper, we propose Adaptive mobility of Courier nodes in Threshold-optimized
Depth-based routing (AMCTD), exploring the proficient amendments in depth
threshold and implementing the optimal weight function to achieve longer
network lifetime. We segregate our scheme in 3 major phases of weight updating,
depth threshold variation and adaptive mobility of courier nodes. During data
forwarding, we provide the framework for alterations in threshold to cope with
the sparse condition of network. We ultimately perform detailed simulations to
scrutinize the performance of our proposed scheme and its comparison with other
two notable routing protocols in term of network lifetime and other essential
parameters. The simulations results verify that our scheme performs better than
the other techniques and near to optimal in the field of UWSN.Comment: 8th International Conference on Broadband and Wireless Computing,
Communication and Applications (BWCCA'13), Compiegne, Franc
Interference of five problematic weed species with rice growth and yield
Five weed species namely, Cyperus rotundus L., Cyperus difformis L., Echinochloa colonum (L.) Link., Paspalum paspaloides (Mich.) Scribner, and Marsilea minuta L. were selected for the assessment of their level of competition with two commonly grown rice varieties viz. Basmati-385 and Super Basmati. Root and shoot growth as well as grain yield, in both rice cultivars, were adversely affected due to the weed competition in the field experiments. In general, Super Basmati was found to be comparatively more tolerant to weed infestation than Basmati-385. There were 6 to 40% and 21 to 56% reduction in grain yield of Super Basmati and Basmati-385, respectively, due to different weed species. E. colonum was found to be the most damaging weed which resulted in the highest grain yield losses of 56 and 42% in Basmati-385 and Super Basmati, respectively. P. paspaloides was found to be the second most damaging weed species which caused 47% yield losses in Basmati-385. It was concluded from the study that E. colonum was the most competitive weed. It resulted in the highest yield losses in rice especially in var. Basmati-385.Keywords: Rice, weeds, yield losses
Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer
We have conducted a search for extended energy deposition trails left by
ultra-relativistic magnetic monopoles interacting in Antarctic ice. The
non-observation of any satisfactory candidates in the 31 days of accumulated
ANITA-II flight data results in an upper limit on the diffuse flux of
relativistic monopoles. We obtain a 90% C.L. limit of order
10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the
anticipated energy E=10^{16} GeV. This bound is stronger than all previously
published experimental limits for this kinematic range.Comment: updated to version accepted by Phys. Rev.
Magnetoresistance through a single molecule
The use of single molecules to design electronic devices is an extremely
challenging and fundamentally different approach to further downsizing
electronic circuits. Two-terminal molecular devices such as diodes were first
predicted [1] and, more recently, measured experimentally [2]. The addition of
a gate then enabled the study of molecular transistors [3-5]. In general terms,
in order to increase data processing capabilities, one may not only consider
the electron's charge but also its spin [6,7]. This concept has been pioneered
in giant magnetoresistance (GMR) junctions that consist of thin metallic films
[8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains,
however, a challenging endeavor. As an important first step in this field, we
have performed an experimental and theoretical study on spin transport across a
molecular GMR junction consisting of two ferromagnetic electrodes bridged by a
single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though
H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can
enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first
submission to Nature Nanotechnology, from May 18th, 201
Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer
We report the observation of sixteen cosmic ray events of mean energy of 1.5
x 10^{19} eV, via radio pulses originating from the interaction of the cosmic
ray air shower with the Antarctic geomagnetic field, a process known as
geosynchrotron emission. We present the first ultra-wideband, far-field
measurements of the radio spectral density of geosynchrotron emission in the
range from 300-1000 MHz. The emission is 100% linearly polarized in the plane
perpendicular to the projected geomagnetic field. Fourteen of our observed
events are seen to have a phase-inversion due to reflection of the radio beam
off the ice surface, and two additional events are seen directly from above the
horizon.Comment: 5 pages, 5 figures, new figure adde
On-orbit Operations and Offline Data Processing of CALET onboard the ISS
The CALorimetric Electron Telescope (CALET), launched for installation on the
International Space Station (ISS) in August, 2015, has been accumulating
scientific data since October, 2015. CALET is intended to perform long-duration
observations of high-energy cosmic rays onboard the ISS. CALET directly
measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20
TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can
measure the spectrum of gamma rays well into the TeV range, and the spectra of
protons and nuclei up to a PeV.
In order to operate the CALET onboard ISS, JAXA Ground Support Equipment
(JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established.
Scientific operations using CALET are planned at WCOC, taking into account
orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences
are used to control the CALET observation modes on orbit. Calibration data
acquisition by, for example, recording pedestal and penetrating particle
events, a low-energy electron trigger mode operating at high geomagnetic
latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic
latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit
while maintaining maximum exposure to high-energy electrons and other
high-energy shower events by always having the high-energy trigger mode active.
The WCOC also prepares and distributes CALET flight data to collaborators in
Italy and the United States.
As of August 31, 2017, the total observation time is 689 days with a live
time fraction of the total time of approximately 84%. Nearly 450 million events
are collected with a high-energy (E>10 GeV) trigger. By combining all operation
modes with the excellent-quality on-orbit data collected thus far, it is
expected that a five-year observation period will provide a wealth of new and
interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
- …
