2,860 research outputs found

    Ion-beam-assisted fabrication and manipulation of metallic nanowires

    Get PDF
    Metallic nanowires (NWs) are the key performers for future micro/nanodevices. The controlled manoeuvring and integration of such nanoscale entities are essential requirements. Presented is a discussion of a fabrication approach that combines chemical etching and ion beam milling to fabricate metallic NWs. The shape modification of the metallic NWs using ion beam irradiation (bending towards the ion beam side) is investigated. The bending effect of the NWs is observed to be instantaneous and permanent. The ion beam-assisted shape manoeuvre of the metallic structures is studied in the light of ion-induced vacancy formation and reconfiguration of the damaged layers. The manipulation method can be used for fabricating structures of desired shapes and aligning structures at a large scale. The controlled bending method of the metallic NWs also provides an understanding of the strain formation process in nanoscale metals

    Quaternion Gravi-Electromagnetism

    Full text link
    Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.Comment: Key Words: Quaternion, dyons, gravito-dyons, gravi-electromagnetism. PACS No.: 04.90. +e ; 14.80. H

    Investigation of ion induced bending mechanism for nanostructures

    Get PDF
    Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ion–NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology

    Shape Invariant Potential and Semi-Unitary Transformations (SUT) for Supersymmetric Harmonic Oscillator in T4-Space

    Full text link
    Constructing the Semi - Unitary Transformation (SUT) to obtain the supersymmetric partner Hamiltonians for a one dimensional harmonic oscillator, it has been shown that under this transformation the supersymmetric partner loses its ground state in T^{4}- space while its eigen functions constitute a complete orthonormal basis in a subspace of full Hilbert space. Keywords: Supersymmetry, Superluminal Transformations, Semi Unitary Transformations. PACS No: 14.80L
    corecore