785 research outputs found
Manifestations électrocardiographiques de l'hyperkaliémie modérée à sévère
L'hyperpotassémie est un désordre électrolytique, qui dans des situations extrêmes, peut conduire au décès. Les premières études effectuées montraient un lien entre la progression du taux de potassium et l'apparition de modifications électrocardiographiques. Certaines études, plus récentes, ont mis en doute cette hypothèse. Notre étude a pour but de chercher quels sont les facteurs associés à l'apparition d'un pattern électrocardiographique typique, en cas d'hyperpotassémie modérée à sévère (≥7mmol/l), dans une population adulte hospitalière, non sélectionnée. Le 2ème objectif est d'estimer la mortalité liée à ce degré d'hyperkaliémie. Etude au design rétrospectif, sélectionnant les patients adultes avec K : ≥ 7mmol/L, entre 2009 et 2010 au CHUV, ayant un électrocardiogramme à disposition entre -1h et +2h de la prise de sang. Recueil des valeurs de laboratoires et des comorbidités de ces patients et analyse des électrocardiogrammes : fréquence cardiaque, durée QRS, durée QTc, amplitudes ondes T et RS, présence d'un trouble de la conduction, d'une fibrillation ou d'un flutter, d'un rythme jonctionnel.
Résultats : Sur les 82 patients sélectionnés, l'analyse statistique a mis en évidence que le taux de potassium n'est corrélé ni à l'apparition de modifications électrocardiographiques typiques, ni à la mortalité. Le seul élément pouvant prédire, sur l'électrocardiogramme, l'apparition d'un pattern typique est le degré d'acidémie. Le risque de décès ou de présenter un arrêt cardiorespiratoire en cas d'hyperkaliémie modérée à sévère est principalement déterminé par la présence d'une acidose métabolique
A method to localize gamma-ray bursts using POLAR
The hard X-ray polarimeter POLAR aims to measure the linear polarization of
the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts
(GRBs). The position in the sky of the detected GRBs is needed to determine
their level of polarization. We present here a method by which, despite of the
polarimeter incapability of taking images, GRBs can be roughly localized using
POLAR alone. For this purpose scalers are attached to the output of the 25
multi-anode photomultipliers (MAPMs) that collect the light from the POLAR
scintillator target. Each scaler measures how many GRB photons produce at least
one energy deposition above 50 keV in the corresponding MAPM. Simulations show
that the relative outputs of the 25 scalers depend on the GRB position. A
database of very strong GRBs simulated at 10201 positions has been produced.
When a GRB is detected, its location is calculated searching the minimum of the
chi2 obtained in the comparison between the measured scaler pattern and the
database. This GRB localization technique brings enough accuracy so that the
error transmitted to the 100% modulation factor is kept below 10% for GRBs with
fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will
be useful for those cases where no other instruments are simultaneously
observing the same field of view.Comment: 13 pages, 10 figure
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater
POLAR: a space borne GRB polarimeter
International audienceThe direction and the level of polarization of high energy photons emitted by astrophysics sources are valuable observables for the understanding of the corresponding emission mechanisms, source geometry and strength of magnetic fields at work. POLAR is a novel compact space-borne detector conceived for a precise measurement of hard X-ray polarization and optimized for the detection of Gamma-Ray Burst (GRB) photons in the energy range 50-500 keV. In POLAR, the GRB photons undergo Compton scattering in a target made out of 1600 plastic scintillator bars. The azimuthal distribution of the scattered photons inside the target provides the information on the GRB polarization. The target is divided into 5x5 units, each one consisting of 8x8 scintillator bars optically coupled with a multi-anode photomultiplier. POLAR, thanks to its large modulation factor (mu_100=40%), its large effective area (Aeff = 250 cm2), and its large field of view ( 1/3 of the sky) will be able to determine the degree and angle of polarization of a strong GRB with a minimum detectable polarization of less than 10% (3sigma). In this communication the present design and status of the POLAR project is presented. Expected results through deep Monte Carlo simulation studies as well as the recent results of laboratory measurements are detailed
Water Abundance of Dunes in Gale Crater, Mars From Active Neutron Experiments and Implications for Amorphous Phases
We report the water abundance of Bagnold Dune sand in Gale crater, Mars by analyzing active neutron experiments using the Dynamic Albedo of Neutrons instrument. We report a bulk water‐equivalent‐hydrogen abundance of 0.68 ± 0.15 wt%, which is similar to measurements several kilometers away and from those taken of the dune surface. Thus, the dune is likely dehydrated throughout. Furthermore, we use geochemical constraints, including bulk water content, to develop compositional models of the amorphous fraction for which little information is known. We find the amorphous fraction contains ∼26‐ to 64‐wt% basaltic glass and up to ∼24‐wt% rhyolitic glass, suggesting at least one volcanic source for the dune material. We also find a range of hydrated phases may be present in appreciable abundances, either from the incorporation of eroded aqueously altered sediments or the direct alteration of the dune sand
The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact
The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiositys traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit
POLAR, an instrument to measure GRB polarization. Design and laboratory tests.
International audienceReliable polarization measurements of photons from Gamma Ray Bursts (GRB) would make the understanding of the GRB phenomenon progress enormously. POLAR is a concept for an instrument that would enable such a measurement. We report about performances predicted by of Monte-Carlo and on laboratory tests to validate some critical aspects of the desig
POLAR: a compact detector for GRB polarization measurements
Présenté par J.P. VialleInternational audienceThrough polarization measurements of X-rays can provide essential information for identifying processes responsible of their emission by astrophysical objects, almost no experimental data exist yet. We propose here a novel wide field compact detector for hard X-ray polarization measurements based on Compton scattering process and made of low-Z fast scintillators
Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data
New transiting planet candidates are identified in sixteen months (May 2009 -
September 2010) of data from the Kepler spacecraft. Nearly five thousand
periodic transit-like signals are vetted against astrophysical and instrumental
false positives yielding 1,091 viable new planet candidates, bringing the total
count up to over 2,300. Improved vetting metrics are employed, contributing to
higher catalog reliability. Most notable is the noise-weighted robust averaging
of multi-quarter photo-center offsets derived from difference image analysis
which identifies likely background eclipsing binaries. Twenty-two months of
photometry are used for the purpose of characterizing each of the new
candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are
tabulated as well as the products of light curve modeling: reduced radius
(Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest
fractional increases are seen for the smallest planet candidates (197% for
candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and
those at longer orbital periods (123% for candidates outside of 50-day orbits
versus 85% for candidates inside of 50-day orbits). The gains are larger than
expected from increasing the observing window from thirteen months (Quarter 1--
Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the
benefit of continued development of pipeline analysis software. The fraction of
all host stars with multiple candidates has grown from 17% to 20%, and the
paucity of short-period giant planets in multiple systems is still evident. The
progression toward smaller planets at longer orbital periods with each new
catalog release suggests that Earth-size planets in the Habitable Zone are
forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at
http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the
NASA Exoplanet Archiv
- …
