260 research outputs found
The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP)
Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, endoparasites, fungi, protozoa, and viruses. Venom-centric microbiome studies are relatively sparse to date and the adaptive advantages that venom-associated microbes might offer to their hosts, or that hosts might provide to venom-associated microbes, remain unknown. We highlight the potential for the discovery of venom-microbiomes within the adaptive landscape of venom systems. The considerable number of known, convergently evolved venomous animals juxtaposed with the comparatively few studies to identify microbial communities in venom provides new possibilities for both biodiversity and therapeutic discoveries. We present an evidence-based argument for integrating microbiology as part of venomics to which we refer to as venom-microbiomics. We also introduce iVAMP, the Initiative for Venom Associated Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing consortium for interested parties to contribute and collaborate within this subdiscipline. Our consortium seeks to support diversity, inclusion and scientific collaboration among all researchers interested in this subdiscipline
The Star Formation History and Dust Content in the Far Outer Disc of M31
We present a detailed analysis of two fields located 26 kpc (~5 scalelengths)
from the centre of M31. One field samples the major axis populations--the Outer
Disc field--while the other is offset by ~18' and samples the Warp in the
stellar disc. The CMDs based on HST/ACS imaging reach old main-sequence
turn-offs (~12.5 Gyr). We apply the CMD-fitting technique to the Warp field to
reconstruct the star formation history (SFH). We find that after undergoing
roughly constant SF until about 4.5 Gyr ago, there was a rapid decline in
activity and then a ~1.5 Gyr lull, followed by a strong burst lasting 1.5 Gyr
and responsible for 25% of the total stellar mass in this field. This burst
appears to be accompanied by a decline in metallicity which could be a
signature of the inflow of metal-poor gas. The onset of the burst (~3 Gyr ago)
corresponds to the last close passage of M31 and M33 as predicted by detailed
N-body modelling, and may have been triggered by this event. We reprocess the
deep M33 outer disc field data of Barker et al. (2011) in order to compare
consistently-derived SFHs. This reveals a similar duration burst that is
exactly coeval with that seen in the M31 Warp field, lending further support to
the interaction hypothesis. The complex SFHs and the smoothly-varying
age-metallicity relations suggest that the stellar populations observed in the
far outer discs of both galaxies have largely formed in situ rather than
migrated from smaller galactocentric radii. The strong differential reddening
affecting the CMD of the Outer Disc field prevents derivation of the SFH.
Instead, we quantify this reddening and find that the fine-scale distribution
of dust precisely follows that of the HI gas. This indicates that the outer HI
disc of M31 contains a substantial amount of dust and therefore suggests
significant metal enrichment in these parts, consistent with inferences from
our CMD analysis.Comment: Abstract shortened. 17 pages, 12 figures (+ 6 pages & 5 figures in
Appendix). MNRAS, in pres
Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms
This work is licensed under a Creative Commons Attribution 4.0 International License.Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.São Paulo Research Foundation FAPESP 2015/24408-42017/50028-0 (SPRINT)2019/03552-0CNPq (PROTAX) 440539/2015-3CNPq (Research Productivity Scholarship)301293/2019-
Presence of oxygen in diffusive equilibrium in thin films (DET) probes:Effect on phosphate and iron porewater profiles and advice for correct deoxygenation and handling procedures
Diffusive equilibrium in thin films (DET) probes are passive samplers that are designed to reflect in situ porewater concentrations. In this study, we show that the gel and the plastic housing of DET probes store a substantial amount of oxygen (O2) that affects the chemical composition of porewater. To ensure complete deoxygenation, DET probes need to be treated for 7 d with continuous nitrogen flow. Such fully deoxygenated probes can be handled in the air (exposure time: < 90 s) and deployed to sediments through oxic water (exposure time: < 2 s) without significant ad(b)sorption of O2. Furthermore, we deployed a set of untreated (i.e., in equilibrium with atmospheric O2) and a set of fully deoxygenated DET probes to lake sediments. The O2 present in untreated DET probes altered iron (Fe) and phosphate (P) porewater profiles significantly. This is caused by the oxidation, immobilization, and accumulation of redox-sensitive Fe (oxyhydr)oxides in the probe over time. Since P has a high binding affinity to Fe (oxyhydr)oxides, it is not in equilibrium with the porewater and is overestimated as well. Our results highlight the importance of thorough deoxygenation of DET probes before deployment in sediments, especially when addressing redox-sensitive porewater species.</p
Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems
While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions
Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion
Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis.
Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance
Design of a randomized controlled trial for multiple cancer risk behaviors among Spanish-speaking Mexican-origin smokers
Background: Smoking, poor diet, and physical inactivity account for as much as 60% of cancer risk. Latinos experience profound disparities in health behaviors, as well as the cancers associated with them. Currently, there is a dearth of controlled trials addressing these health behaviors among Latinos. Further, to the best of our knowledge, no studies address all three behaviors simultaneously, are culturally sensitive, and are guided by formative work with the target population. Latinos represent 14% of the U. S. population and are the fastest growing minority group in the country. Efforts to intervene on these important lifestyle factors among Latinos may accelerate the elimination of cancer-related health disparities
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
- …
