34,386 research outputs found
Qualitative picture of a new mechanism for high-Tc superconductors
Xu et al. observed enhanced Nernst effect and Iguchi et al. observed patched
diamagnetism, both well above in underdoped high- superconductors
(HTSCs). A new mechanism is proposed here, which seems to naturally explain, at
least qualitatively, these observations, as well as the d-wave nature and
continuity of pseudogap and pairing gap, the tunneling conductance above ,
as well as , , , etc. This mechanism combines
features of dynamic charged stripes, preformed pairs, and spin-bags: At
appropriete doping levels, the doped holes (and perhaps also electrons) will
promote the formation of anti-phase islands in short-range anti-ferromagnetic
order. On the boundary of each such island reside two doped carriers; the
unscreened Coulomb repulsion between them stabilizes its size.
Superconductivity results when such ``pre-formed pairs'' Bose-condense.Comment: 8 pages, 4 figures, New3SC-4 Conference Proceedings, to be published
in ijmp
The perfect spin injection in silicene FS/NS junction
We theoretically investigate the spin injection from a ferromagnetic silicene
to a normal silicene (FS/NS), where the magnetization in the FS is assumed from
the magnetic proximity effect. Based on a silicene lattice model, we
demonstrated that the pure spin injection could be obtained by tuning the Fermi
energy of two spin species, where one is in the spin orbit coupling gap and the
other one is outside the gap. Moreover, the valley polarity of the spin species
can be controlled by a perpendicular electric field in the FS region. Our
findings may shed light on making silicene-based spin and valley devices in the
spintronics and valleytronics field.Comment: 6 pages, 3 figure
Mining frequent biological sequences based on bitmap without candidate sequence generation
Biological sequences carry a lot of important genetic information of organisms. Furthermore, there is an inheritance law related to protein function and structure which is useful for applications such as disease prediction. Frequent sequence mining is a core technique for association rule discovery, but existing algorithms suffer from low efficiency or poor error rate because biological sequences differ from general sequences with more characteristics. In this paper, an algorithm for mining Frequent Biological Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data structure and transforms each row into a quicksort list QS-list for sequence growth. For the continuity and accuracy requirement of biological sequence mining, tested sequences used during the mining process of FBSB are real ones instead of generated candidates, and all the frequent sequences can be mined without any errors. Comparing with other algorithms, the experimental results show that FBSB can achieve a better performance on both run time and scalability
Large enhancement of the effective second-order nonlinearity in graphene metasurfaces
Using a powerful homogenization technique, one- and two-dimensional graphene
metasurfaces are homogenized both at the fundamental frequency (FF) and second
harmonic (SH). In both cases, there is excellent agreement between the
predictions of the homogenization method and those based on rigorous numerical
solutions of Maxwell equations. The homogenization technique is then employed
to demonstrate that, owing to a double-resonant plasmon excitation mechanism
that leads to strong, simultaneous field enhancement at the FF and SH, the
effective second-order susceptibility of graphene metasurfaces can be enhanced
by more than three orders of magnitude as compared to the intrinsic
second-order susceptibility of a graphene sheet placed on the same substrate.
In addition, we explore the implications of our results on the development of
new active nanodevices that incorporate nanopatterned graphene structures.Comment: 11 pages, 12 figure
The Latent Heat of Single Flavor Color Superconductivity in a Magnetic Field
We calculate the energy release associated with first-order phase transition
between different types of single flavor color superconductivity in a magnetic
field.Comment: Updated version accepted by PRD, with minor change
High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures
This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms
China's energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method
China's energy consumption in the building sector (BEC) is not counted as a separate type of energy consumption, but divided and mixed in other sectors in China's statistical system. This led to the lack of historical data on China's BEC. Moreover, previous researches' shortages such as unsystematic research on BEC, various estimation methods with complex calculation process, and difficulties in data acquisition resulted in “heterogeneous” of current BEC in China. Aiming to these deficiencies, this study proposes a set of China building energy consumption calculation method (CBECM) by splitting out the building related energy consumption mixed in other sectors in the composition of China Statistical Yearbook-Energy Balance Sheet. Then, China's BEC from 2000 to 2014 are estimated using CBECM and compared with other studies. Results show that, from 2000 to 2014, China's BEC increased 1.7 times, rising from 301 to 814 million tons of standard coal consumed, with the BEC percentage of total energy consumption stayed relatively stable between 17.7% and 20.3%. By comparison, we find that our results are reliable and the CBECM has the following advantages over other methods: data source is authoritative, calculation process is concise, and it is easy to obtain time series data on BEC etc. The CBECM is particularly suitable for the provincial government to calculate the local BEC, even in the circumstance with statistical yearbook available only
- …
