545 research outputs found
Virtual and Soft Pair Corrections to Polarized Muon Decay Spectrum
Radiative corrections to the muon decay spectrum due to soft and virtual
electron--positron pairs are calculated.Comment: 10pp, 2 PS figs, details of calculations are adde
A nonlinear approach to NN interactions using self-interacting meson fields
Motivated by the success of models based on chiral symmetry in NN
interactions we investigate self-interacting scalar, pseudoscalar and vector
meson fields and their impact for NN forces. We parametrize the corresponding
nonlinear field equations and get analytic wavelike solutions. A probability
amplitude for the propagation of particle states is calculated and applied in
the framework of a boson-exchange NN potential. Using a proper normalization of
the meson fields makes all self-scattering amplitudes finite. The same
normalization is able to substitute for the phenomenological form factors used
in conventional boson exchange potentials and thus yields an phenomenological
understanding of this part of the NN interaction. We find an empirical scaling
law which relates the meson self-interaction couplings to the pion mass and
self-interaction coupling constant. Our model yields np phase shifts comparable
to the Bonn B potential results and deuteron properties, in excellent agreement
with experimental data.Comment: Reviewed version, 25 pages REVTeX, more info at
http://i04ktha.desy.d
Nuclear Polarizabilities and Logarithmic Sum Rules
The electric polarizability and logarithmic mean-excitation energy are
calculated for the deuteron using techniques introduced in atomic physics.
These results are then used to improve limits on the atomic-deuterium frequency
shift due to nuclear polarization in the unretarded dipole limit, as well as
confirming previous results.Comment: 7 pages, latex -- To appear in Phys. Rev. C -
Deuteron Magnetic and Quadrupole Moments with a Poincar\'e Covariant Current Operator in the Front-Form Dynamics
The deuteron magnetic and quadrupole moments are unambiguosly determined
within the front-form Hamiltonian dynamics, by using a new current operator
which fulfills Poincar\'e, parity and time reversal covariance, together with
hermiticity and the continuity equation. For both quantities the usual
disagreement between theoretical and experimental results is largely removed.Comment: To appear in Phys. Rev. Let
Consistent description of NN and pi-N interactions using the solitary boson exchange potential
A unified description of NN and pi-N elastic scattering is presented in the
framework of the one solitary boson exchange potential (OSBEP). This model
already successfully applied to analyze NN scattering is now extended to
describe pi-N scattering while also improving its accuracy in the NN domain. We
demonstrate the importance of regularization of pi-N scattering amplitudes
involving Delta isobars and derivative meson-nucleon couplings, as this model
always yields finite amplitudes without recourse to phenomenological form
factors. We find an empirical scaling relation of the meson self interaction
coupling constants consistent with that previously found in the study of NN
scattering. Finally, we demonstrate that the OSBEP model does not contradict
the soft-pion theorems of pi-N scattering.Comment: 29 pages RevTeX, submitted to Phys. Rev. C, further information at
http://i04ktha.desy.d
The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn)
We present a charge-dependent nucleon-nucleon (NN) potential that fits the
world proton-proton data below 350 MeV available in the year of 2000 with a
chi^2 per datum of 1.01 for 2932 data and the corresponding neutron-proton data
with chi^2/datum = 1.02 for 3058 data. This reproduction of the NN data is more
accurate than by any phase-shift analysis and any other NN potential. The
charge-dependence of the present potential (that has been dubbed `CD-Bonn') is
based upon the predictions by the Bonn Full Model for charge-symmetry and
charge-independence breaking in all partial waves with J <= 4. The potential is
represented in terms of the covariant Feynman amplitudes for one-boson exchange
which are nonlocal. Therefore, the off-shell behavior of the CD-Bonn potential
differs in a characteristic and well-founded way from commonly used local
potentials and leads to larger binding energies in nuclear few- and many-body
systems, where underbinding is a persistent problem.Comment: 69 pages (RevTex) including 20 tables and 9 figures (ps files
Pseudovector vs. pseudoscalar coupling in one-boson exchange NN potentials
We examine the effects of pseudoscalar and pseudovector coupling of the pi
and eta mesons in one-boson exchange models of the NN interaction using two
approaches: time-ordered perturbation theory unitarized with the relativistic
Lippmann-Schwinger equation, and a reduced Bethe-Salpeter equation approach
using the Thompson equation. Contact terms in the one-boson exchange amplitudes
in time-ordered perturbation theory lead naturally to the introduction of
s-channel nucleonic cutoffs for the interaction, which strongly suppresses the
far off-shell behavior of the amplitudes in both approaches. Differences
between the resulting NN predictions of the various models are found to be
small, and particularly so when coupling constants of the other mesons are
readjusted within reasonable limits.Comment: 24 pages, 4 figure
The properties of the three-nucleon system with the dressed-bag model for nn interaction. I: New scalar three-body force
A multi-component formalism is developed to describe three-body systems with
nonstatic pairwise interactions and non-nucleonic degrees of freedom. The
dressed-bag model for interaction based on the formation of an
intermediate six-quark bag dressed by a -field is applied to the
system, where it results in a new three-body force between the six-quark bag
and a third nucleon. Concise variational calculations of bound states are
carried out in the dressed-bag model including the new three-body force. It is
shown that this three-body force gives at least half the total binding
energy, while the weight of non-nucleonic components in the H and He
wavefunctions can exceed 10%. The new force model provides a very good
description of bound states with a reasonable magnitude of the
coupling constant. The model can serve as a natural bridge between dynamical
description of few-nucleon systems and the very successful Walecka approach to
heavy nuclei and nuclear matter.Comment: 26 pages, Latex, 7 figure
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays
Bose-Einstein Correlations (BEC) of three identical charged pions were
studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP.
The genuine three-pion correlations, corrected for the Coulomb effect, were
separated from the known two-pion correlations by a new subtraction procedure.
A significant genuine three-pion BEC enhancement near threshold was observed
having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029
(syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041
(syst.). The Coulomb correction was found to increase the \lambda_3 value by
\~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of
0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the
three-pion sample purity. A relation between the two-pion and the three-pion
source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.
- …
