899 research outputs found
Search for heavy antinuclei in the cosmic radiation
The existence of significant amounts of antimatter in the Universe is demonstrated through cosmic radiation. The data from the Danish-French Cosmic Ray Spectrometer on the HEAO-3 satellite offers an opportunity to search for heavy antinuclei, since all the relevant parameters (charge, velocity, arrival direction, and satellite position at the time of arrival) are measured for each recorded nucleus. Using the 22676 positive only events in the data seletion corresponding to L 1.5 as a measure of our exposure factor to heavy antinuclei and noting that no corresponding antinuclei were found, an upper limit (95% confidence) is given to the ratio of antinuclei to nuclei as 1.4 x .0001 for particles with Z 9. The upper limit resulting from this work is compared with previous results of searches for heavy antimatter in the cosmic radiation. It is seen that, if one regards only antiparticles heavier than fluorine, then the present result represents a reduced upper limit over previous data. When taken together, all the available experiment data now push the upper limit for the ratio of antiparticles to particles well below .0001
Computer Research
Contains research objectives and report on status of research.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Science Foundation (Grant GP-2495)National Aeronautics and Space Administration (Grant NsG-496
Plasmon scattering from single sub-wavelength holes
We map the complex electric fields associated with the scattering of surface
plasmon polaritons by single sub-wavelength holes of different sizes in thick
gold films. We identify and quantify the different modes associated with this
event, including a radial surface wave with an angularly isotropic amplitude.
This wave is shown to arise from the out-of-plane electric dipole induced in
the hole, and we quantify the corresponding polarizability, which is in
excellent agreement with electromagnetic theory. Time-resolved measurements
reveal a time-delay of 38? +/- 18 fs between the surface plasmon polariton and
the radial wave, which we attribute to the interaction with a broad hole
resonance
Faddeev approach to confined three-quark problems
We propose a method that allows for the efficient solution of the three-body
Faddeev equations in the presence of infinitely rising confinement
interactions. Such a method is useful in calculations of nonrelativistic and
especially semirelativistic constituent quark models. The convergence of the
partial wave series is accelerated and possible spurious contributions in the
Faddeev components are avoided. We demonstrate how the method works with the
example of the Goldstone-boson-exchange chiral quark model for baryons.Comment: 6 page
Dual character of the electronic structure in YBa2Cu4O8: conduction bands of CuO2 planes and CuO chains
We use microprobe Angle-Resolved Photoemission Spectroscopy (muARPES) to
separately investigate the electronic properties of CuO2 planes and CuO chains
in the high temperature superconductor, YBa2Cu4O8. In the CuO2 planes, a two
dimensional (2D) electronic structure with nearly momentum independent bilayer
splitting is observed. The splitting energy is 150 meV at (pi,0), almost 50%
larger than in Bi2Sr2CaCu2O(8+d) and the electron scattering at the Fermi level
in the bonding band is about 1.5 times stronger than in the antibonding band.
The CuO chains have a quasi one dimensional (1D) electronic structure. We
observe two 1D bands separated by ~ 550meV: a conducting band and an insulating
band with an energy gap of ~ 240meV. We find that the conduction electrons are
well confined within the planes and chains with a non-trivial hybridization.Comment: 4 pages, 4 figure
Giant ambipolar Rashba effect in a semiconductor: BiTeI
We observe a giant spin-orbit splitting in bulk and surface states of the
non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be
placed in the valence or in the conduction band by controlling the surface
termination. In both cases it intersects spin-polarized bands, in the
corresponding surface depletion and accumulation layers. The momentum splitting
of these bands is not affected by adsorbate-induced changes in the surface
potential. These findings demonstrate that two properties crucial for enabling
semiconductor-based spin electronics -- a large, robust spin splitting and
ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure
Origins of large critical temperature variations in single layer cuprates
We study the electronic structures of two single layer superconducting
cuprates, TlBaCuO (Tl2201) and
(BiPb)(SrLa)CuO (Bi2201) which
have very different maximum critical temperatures (90K and 35K respectively)
using Angular Resolved Photoemission Spectroscopy (ARPES). We are able to
identify two main differences in their electronic properties. First, the shadow
band that is present in double layer and low T single layer cuprates
is absent in Tl2201. Recent studies have linked the shadow band to structural
distortions in the lattice and the absence of these in Tl2201 may be a
contributing factor in its T.Second, Tl2201's Fermi surface (FS)
contains long straight parallel regions near the anti-node, while in Bi2201 the
anti-nodal region is much more rounded. Since the size of the superconducting
gap is largest in the anti-nodal region, differences in the band dispersion at
the anti-node may play a significant role in the pairing and therefore affect
the maximum transition temperature.Comment: 6 pages, 5 figures,1 tabl
Fermi surface and quasiparticle dynamics of Na(x)CoO2 {x=0.7} investigated by Angle-Resolved Photoemission Spectroscopy
We present an angle-resolved photoemission study of Na0.7CoO2, the host
cobaltate of the NaxCoO2.yH2O series. Our results show a large hexagonal-like
hole-type Fermi surface, an extremely narrow strongly renormalized
quasiparticle band and a small Fermi velocity. Along the Gamma to M high
symmetry line, the quasiparticle band crosses the Fermi level from M toward
Gamma consistent with a negative sign of effective single-particle hopping (t
): t is estimated to be about 8 meV which is on the order of exchange coupling
J in this system. This suggests that t ~ J ~ 10 meV is an important energy
scale in the system. Quasiparticles are well defined only in the T-linear
resistivity regime. Small single particle hopping and unconventional
quasiparticle dynamics may have implications for understanding the unusual
behavior of this new class of compounds.Comment: Revised text, Added Figs, Submitted to PR
- …
