7,297 research outputs found
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
Fundamental conservation laws predict ballistic, i.e., dissipationless
transport behaviour in one-dimensional quantum magnets. Experimental evidence,
however, for such anomalous transport has been lacking ever since. Here we
provide experimental evidence for ballistic heat transport in a S=1/2
Heisenberg chain. In particular, we investigate high purity samples of the
chain cuprate SrCuO2 and observe a huge magnetic heat conductivity
. An extremely large spinon mean free path of more than a
micrometer demonstrates that is only limited by extrinsic
scattering processes which is a clear signature of ballistic transport in the
underlying spin model
Configurational entropy of Wigner crystals
We present a theoretical study of classical Wigner crystals in two- and
three-dimensional isotropic parabolic traps aiming at understanding and
quantifying the configurational uncertainty due to the presence of multiple
stable configurations. Strongly interacting systems of classical charged
particles confined in traps are known to form regular structures. The number of
distinct arrangements grows very rapidly with the number of particles, many of
these arrangements have quite low occurrence probabilities and often the
lowest-energy structure is not the most probable one. We perform numerical
simulations on systems containing up to 100 particles interacting through
Coulomb and Yukawa forces, and show that the total number of metastable
configurations is not a well defined and representative quantity. Instead, we
propose to rely on the configurational entropy as a robust and objective
measure of uncertainty. The configurational entropy can be understood as the
logarithm of the effective number of states; it is insensitive to the presence
of overlooked low-probability states and can be reliably determined even within
a limited time of a simulation or an experiment.Comment: 12 pages, 8 figures. This is an author-created, un-copyedited version
of an article accepted for publication in J. Phys.: Condens. Matter. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The definitive
publisher-authenticated version is available online at
10.1088/0953-8984/23/7/075302.
An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems
Recent developments in the study of ultracold Rydberg gases demand an
advanced level of experimental sophistication, in which high atomic and optical
densities must be combined with excellent control of external fields and
sensitive Rydberg atom detection. We describe a tailored experimental system
used to produce and study Rydberg-interacting atoms excited from dense
ultracold atomic gases. The experiment has been optimized for fast duty cycles
using a high flux cold atom source and a three beam optical dipole trap. The
latter enables tuning of the atomic density and temperature over several orders
of magnitude, all the way to the Bose-Einstein condensation transition. An
electrode structure surrounding the atoms allows for precise control over
electric fields and single-particle sensitive field ionization detection of
Rydberg atoms. We review two experiments which highlight the influence of
strong Rydberg--Rydberg interactions on different many-body systems. First, the
Rydberg blockade effect is used to pre-structure an atomic gas prior to its
spontaneous evolution into an ultracold plasma. Second, hybrid states of
photons and atoms called dark-state polaritons are studied. By looking at the
statistical distribution of Rydberg excited atoms we reveal correlations
between dark-state polaritons. These experiments will ultimately provide a
deeper understanding of many-body phenomena in strongly-interacting regimes,
including the study of strongly-coupled plasmas and interfaces between atoms
and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of
Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and
Future
Accurate mass measurements of Ne, Na, Mg performed with the {\sc Mistral} spectrometer
The minuteness of the nuclear binding energy requires that mass measurements
be highly precise and accurate. Here we report on new measurements Mg
and Na performed with the {\sc Mistral} mass spectrometer at {\sc
Cern}'s {\sc Isolde} facility. Since mass measurements are prone to systematic
errors, considerable effort has been devoted to their evaluation and
elimination in order to achieve accuracy and not only precision. We have
therefore conducted a campaign of measurements for calibration and error
evaluation. As a result, we now have a satisfactory description of the {\sc
Mistral} calibration laws and error budget. We have applied our new
understanding to previous measurements of Ne, Na and
Mg for which re-evaluated values are reported.Comment: submitted to Nuclear Physics
The thermal conductivity of alternating spin chains
We study a class of integrable alternating (S1,S2) quantum spin chains with
critical ground state properties. Our main result is the description of the
thermal Drude weight of the one-dimensional alternating spin chain as a
function of temperature. We have identified the thermal current of the model
with alternating spins as one of the conserved currents underlying the
integrability. This allows for the derivation of a finite set of non-linear
integral equations for the thermal conductivity. Numerical solutions to the
integral equations are presented for specific cases of the spins S1 and S2. In
the low-temperature limit a universal picture evolves where the thermal Drude
weight is proportional to temperature T and central charge c.Comment: 15 pages, 1 figur
Energy and angular momentum sharing in dissipative collisions
Primary and secondary masses of heavy reaction products have been deduced
from kinematics and E-ToF measurements, respectively, for the direct and
reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have
also been measured in coincidence with the heavy fragments.
Direct experimental evidence of the correlation of energy-sharing with net
mass transfer has been found using the information from both the heavy
fragments and the light charged particles.
The ratio of Hydrogen and Helium multiplicities points to a further
correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal
Nonuniform Spin Triplet Superconductivity due to Antisymmetric Spin-Orbit Coupling in Noncentrosymmetric Superconductor CePtSi
We show that the nonuniform state (Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
state) of the spin triplet superconductivity in noncentrosymmetric systems is
stabilized by antisymmetric spin-orbit coupling even if the magnetic field is
absent. The transition temperature of the spin triplet superconductivity is
reduced by the antisymmetric spin-orbit coupling in general. This pair breaking
effect is shown to be similar to the Pauli pair breaking effect due to magnetic
field for the spin singlet superconductivity, in which FFLO state is stabilized
near the Pauli limit (or Chandrasekhar-Clogston limit) of external magnetic
field. Since there are gapless excitations in nonuniform superconducting state,
some physical quantities such as specific heat and penetration depth should
obey the power low temperature-dependences. We discuss the possibility of the
realization of nonuniform state in CePtSi.Comment: 8 pages, 6 figure
Analyse de sensibilité globale d'un modèle spatialisé pour l'évaluation économique du risque d'inondation
L'analyse de sensibilité globale peine à se développer dans le champ de la modélisation environnementale. Dans sa formulation initiale, elle est limitée à l'étude de modèles Y = f (X1; : : : ;Xp) où les variables d'entrée Xj et la sortie Y sont scalaires, alors que nombre de modèles environnementaux incluent une dimension spatiale marquée, soit qu'ils fassent appel à des cartes comme variables d'entrée, soit que leurs sorties soient distribuées spatialement. Au travers d'une étude de cas détaillée, nous présentons dans cet article une extension de l'analyse de sensibilité globale à l'étude de modèles spatialisés. Le modèle étudié, nommé ACB-DE, est un outil d'évaluation économique du risque d'inondation. Il est ici appliqué sur la basse-vallée de l'Orb (Hérault). Des spécifications spatialisées de l'incertitude sont utilisées pour générer un nombre fini de réalisations aléatoires équiprobables des variables d'entrée qui sont des cartes : les effets de structure spatiale ou d'auto-corrélation dans ces cartes peuvent ainsi être pris en compte. La réalisation de cartes d'indices de sensibilité permet ensuite d'étudier les sorties spatialisées du modèle ACB-DE et de rendre compte de la variabilité spatiale des indices de Sobol. L'influence relative des variables d'entrée à différentes échelles d'étude est analysée par la réalisation de cartes d'indices de sensibilité de résolution croissante. L'analyse réalisée permet d'identifier les variables d'entrée incertaines qui expliquent la plus grande part de la variabilité de l'indicateur économique fourni par le modèle ACB-DE ; elle apporte un éclairage nouveau sur le choix de l'échelle adéquate de représentation spatialisée de cet indicateur selon la précision des variables d'entrée. L'approche proposée pourrait être aisément appliquée à d'autres modèles spatialisés peu coûteux en temps de calcul. / Variance-based Sobol' global sensitivity analysis (GSA) was initially designed for the study of models with scalar inputs and outputs, while many models in the environmental field are spatially explicit. As a result, GSA is not a common practise in environmental modelling. In this paper we describe a detailed case study where GSA is performed on a spatially dependent model for flood risk economic assessment on the Orb valley (southeast France). Spatial input factors are handled by associating randomly generated map realizations to scalar values sampled from discrete uniform distributions. The realisations of random input maps can be generated by any method including geostatistical simulation techniques, allowing for spatial structure and auto-correlation to be taken into account. The estimation of sensitivity indices on ACB-DE spatial outputs makes it possible to produce maps of sensitivity indices. These maps describe the spatial variability of Sobol' indices. Sensitivity maps of different resolutions are then compared to discuss the relative influence of uncertain input factors at different scales
Andreev Reflections in Micrometer-Scale Normal-Insulator-Superconductor Tunnel Junctions
Understanding the subgap behavior of Normal-Insulator-Superconductor (NIS)
tunnel junctions is important in order to be able to accurately model the
thermal properties of the junctions. Hekking and Nazarov developed a theory in
which NIS subgap current in thin-film structures can be modeled by multiple
Andreev reflections. In their theory, the current due to Andreev reflections
depends on the junction area and the junction resistance area product. We have
measured the current due to Andreev reflections in NIS tunnel junctions for
various junction sizes and junction resistance area products and found that the
multiple reflection theory is in agreement with our data
- …
