4,805 research outputs found

    Classes of complex networks defined by role-to-role connectivity profiles

    Get PDF
    Interactions between units in phyical, biological, technological, and social systems usually give rise to intrincate networks with non-trivial structure, which critically affects the dynamics and properties of the system. The focus of most current research on complex networks is on global network properties. A caveat of this approach is that the relevance of global properties hinges on the premise that networks are homogeneous, whereas most real-world networks have a markedly modular structure. Here, we report that networks with different functions, including the Internet, metabolic, air transportation, and protein interaction networks, have distinct patterns of connections among nodes with different roles, and that, as a consequence, complex networks can be classified into two distinct functional classes based on their link type frequency. Importantly, we demonstrate that the above structural features cannot be captured by means of often studied global properties

    The Need for Legislative Action to Abolish Interspousal Immunity: Varholla v. Varholla

    Get PDF

    Modes of magnetic resonance of S=1 dimer chain compound NTENP

    Full text link
    The spin dynamics of a quasi one dimensional S=1S=1 bond alternating spin-gap antiferromagnet Ni(C9_9H24_{24}N4_4)NO2_2(ClO4_4) (abbreviated as NTENP) is studied by means of electron spin resonance (ESR) technique. Five modes of ESR transitions are observed and identified: transitions between singlet ground state and excited triplet states, three modes of transitions between spin sublevels of collective triplet states and antiferromagnetic resonance absorption in the field-induced antiferromagnetically ordered phase. Singlet-triplet and intra-triplet modes demonstrate a doublet structure which is due to two maxima in the density of magnon states in the low-frequency range. A joint analysis of the observed spectra and other experimental results allows to test the applicability of the fermionic and bosonic models. We conclude that the fermionic approach is more appropriate for the particular case of NTENP.Comment: 11 pages, 11 figures, published in Phys.Rev.

    Detection of node group membership in networks with group overlap

    Full text link
    Most networks found in social and biochemical systems have modular structures. An important question prompted by the modularity of these networks is whether nodes can be said to belong to a single group. If they cannot, we would need to consider the role of "overlapping communities." Despite some efforts in this direction, the problem of detecting overlapping groups remains unsolved because there is neither a formal definition of overlapping community, nor an ensemble of networks with which to test the performance of group detection algorithms when nodes can belong to more than one group. Here, we introduce an ensemble of networks with overlapping groups. We then apply three group identification methods--modularity maximization, k-clique percolation, and modularity-landscape surveying--to these networks. We find that the modularity-landscape surveying method is the only one able to detect heterogeneities in node memberships, and that those heterogeneities are only detectable when the overlap is small. Surprisingly, we find that the k-clique percolation method is unable to detect node membership for the overlapping case.Comment: 12 pages, 6 figures. To appear in Euro. Phys. J

    Micro-bias and macro-performance

    Full text link
    We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task--a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.Comment: 11 pages, 5 figure
    corecore