527 research outputs found

    Self-consistent theory of turbulence

    Full text link
    A new approach to the stochastic theory of turbulence is suggested. The coloured noise that is present in the stochastic Navier-Stokes equation is generated from the delta-correlated noise allowing us to avoid the nonlocal field theory as it is the case in the conventional theory. A feed-back mechanism is introduced in order to control the noise intensity.Comment: submitted to J.Tech. Phys.Letters (St. Petersburg

    Fractional Liouville and BBGKI Equations

    Full text link
    We consider the fractional generalizations of Liouville equation. The normalization condition, phase volume, and average values are generalized for fractional case.The interpretation of fractional analog of phase space as a space with fractal dimension and as a space with fractional measure are discussed. The fractional analogs of the Hamiltonian systems are considered as a special class of non-Hamiltonian systems. The fractional generalization of the reduced distribution functions are suggested. The fractional analogs of the BBGKI equations are derived from the fractional Liouville equation.Comment: 20 page

    Fractional Fokker-Planck Equation for Fractal Media

    Full text link
    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space.Comment: 17 page

    Fractional Systems and Fractional Bogoliubov Hierarchy Equations

    Full text link
    We consider the fractional generalizations of the phase volume, volume element and Poisson brackets. These generalizations lead us to the fractional analog of the phase space. We consider systems on this fractional phase space and fractional analogs of the Hamilton equations. The fractional generalization of the average value is suggested. The fractional analogs of the Bogoliubov hierarchy equations are derived from the fractional Liouville equation. We define the fractional reduced distribution functions. The fractional analog of the Vlasov equation and the Debye radius are considered.Comment: 12 page

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Langevin formulation for single-file diffusion

    Full text link
    We introduce a stochastic equation for the microscopic motion of a tagged particle in the single file model. This equation provides a compact representation of several of the system's properties such as Fluctuation-Dissipation and Linear Response relations, achieved by means of a diffusion noise approach. Most important, the proposed Langevin Equation reproduces quantitatively the \emph{three} temporal regimes and the corresponding time scales: ballistic, diffusive and subdiffusive.Comment: 9 pages, 5 figures, 1 table, to appear in Physical Review

    Polymer-mediated entropic forces between scale-free objects

    Full text link
    The number of configurations of a polymer is reduced in the presence of a barrier or an obstacle. The resulting loss of entropy adds a repulsive component to other forces generated by interaction potentials. When the obstructions are scale invariant shapes (such as cones, wedges, lines or planes) the only relevant length scales are the polymer size R_0 and characteristic separations, severely constraining the functional form of entropic forces. Specifically, we consider a polymer (single strand or star) attached to the tip of a cone, at a separation h from a surface (or another cone). At close proximity, such that h<<R_0, separation is the only remaining relevant scale and the entropic force must take the form F=AkT/h. The amplitude A is universal, and can be related to exponents \eta governing the anomalous scaling of polymer correlations in the presence of obstacles. We use analytical, numerical and epsilon-expansion techniques to compute the exponent \eta for a polymer attached to the tip of the cone (with or without an additional plate or cone) for ideal and self-avoiding polymers. The entropic force is of the order of 0.1 pN at 0.1 micron for a single polymer, and can be increased for a star polymer.Comment: LaTeX, 15 pages, 4 eps figure

    The weakly coupled fractional one-dimensional Schr\"{o}dinger operator with index 1<α2\bf 1<\alpha \leq 2

    Full text link
    We study fundamental properties of the fractional, one-dimensional Weyl operator P^α\hat{\mathcal{P}}^{\alpha} densely defined on the Hilbert space H=L2(R,dx)\mathcal{H}=L^2({\mathbb R},dx) and determine the asymptotic behaviour of both the free Green's function and its variation with respect to energy for bound states. In the sequel we specify the Birman-Schwinger representation for the Schr\"{o}dinger operator KαP^αgV^K_{\alpha}\hat{\mathcal{P}}^{\alpha}-g|\hat{V}| and extract the finite-rank portion which is essential for the asymptotic expansion of the ground state. Finally, we determine necessary and sufficient conditions for there to be a bound state for small coupling constant gg.Comment: 16 pages, 1 figur

    Steady-State L\'evy Flights in a Confined Domain

    Full text link
    We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric L\'{e}vy flights in an infinitely deep potential well. The fractional Fokker-Planck equation for L\'{e}vy flights is derived and solved analytically in the steady state. It is shown that L\'{e}vy flights are distributed according to the beta distribution, whose probability density becomes singular at the boundaries of the well. The origin of the preferred concentration of flying objects near the boundaries in nonequilibrium systems is clarified.Comment: 10 pages, 1 figur

    Correlations in a Generalized Elastic Model: Fractional Langevin Equation Approach

    Full text link
    The Generalized Elastic Model (GEM) provides the evolution equation which governs the stochastic motion of several many-body systems in nature, such as polymers, membranes, growing interfaces. On the other hand a probe (\emph{tracer}) particle in these systems performs a fractional Brownian motion due to the spatial interactions with the other system's components. The tracer's anomalous dynamics can be described by a Fractional Langevin Equation (FLE) with a space-time correlated noise. We demonstrate that the description given in terms of GEM coincides with that furnished by the relative FLE, by showing that the correlation functions of the stochastic field obtained within the FLE framework agree to the corresponding quantities calculated from the GEM. Furthermore we show that the Fox HH-function formalism appears to be very convenient to describe the correlation properties within the FLE approach
    corecore