3,209 research outputs found
Quantum spin glass in anisotropic dipolar systems
The spin-glass phase in the \LHx compound is considered. At zero transverse
field this system is well described by the classical Ising model. At finite
transverse field deviations from the transverse field quantum Ising model are
significant, and one must take properly into account the hyperfine
interactions, the off-diagonal terms in the dipolar interactions, and details
of the full J=8 spin Hamiltonian to obtain the correct physical picture. In
particular, the system is not a spin glass at finite transverse fields and does
not show quantum criticality.Comment: 6 pages, 2 figures, to appear in J. Phys. Condens. Matter
(proceedings of the HFM2006 conference
Semi-leptonic (1968) decays as a scalar meson probe
The unusual multiplet structures associated with the light spin zero mesons
have recently attracted a good deal of theoretical attention. Here we discuss
some aspects associated with the possibility of getting new experimental
information on this topic from semi-leptonic decays of heavy charged mesons
into an isosinglet scalar or pseudoscalar plus leptons.Comment: 11 pages, 4 figure
Doubly perturbed neutrinos and the mixing parameter
We further study a predictive model for the masses and mixing matrix of three
Majorana neutrinos. At zeroth order the model yielded degenerate neutrinos and
a generalized ``tribimaximal" mixing matrix. At first order the mass
splitting was incorporated and the tribimaximal mixing matrix emerged with
very small corrections but with a zero value for the parameter . In the
present paper a different, assumed weaker, perturbation is included which gives
a non zero value for and further corrections to other quantities.
These corrections are worked out and their consequences discussed under the
simplifying assumption that the conventional CP violation phase vanishes. It is
shown that the existing measurements of the parameter provide strong
bounds on in this model.Comment: 8 page
Quantum spin glass and the dipolar interaction
Systems in which the dipolar energy dominates the magnetic interaction, and
the crystal field generates strong anisotropy favoring the longitudinal
interaction terms, are considered. Such systems in external magnetic field are
expected to be a good experimental realization of the transverse field Ising
model. With random interactions this model yields a spin glass to paramagnet
phase transition as function of the transverse field. Here we show that the
off-diagonal dipolar interaction, although effectively reduced, destroys the
spin glass order at any finite transverse field. Moreover, the resulting
correlation length is shown to be small near the crossover to the paramagnetic
phase, in agreement with the behavior of the nonlinear susceptibility in the
experiments on \LHx. Thus, we argue that the in these experiments a
cross-over to the paramagnetic phase, and not quantum criticality, was
observed.Comment: To appear in Phys. Rev. Let
An approach to permutation symmetry for the electroweak theory
The form of the leptonic mixing matrix emerging from experiment has, in the
last few years, generated a lot of interest in the so-called tribimaximal type.
This form may be naturally associated with the possibility of a discrete
permutation symmetry () among the three generations. However, trying to
implement this attractive symmetry has resulted in some problems and it seems
to have fallen out of favor. We suggest an approach in which the holds to
first approximation, somewhat in the manner of the old SU(3) flavor symmetry of
the three flavor quark model. It is shown that in the case of the neutrino
sector, a presently large experimentally allowed region can be fairly well
described in this first approximation.
We briefly discuss the nature of the perturbations which are the analogs of
the Gell-Mann Okubo perturbations but confine our attention for the most part
to the invariant model. We postulate that the invariant mass
spectrum consists of non zero masses for the and zero masses for
the other charged fermions but approximately degenerate masses for the three
neutrinos. The mixing matrices are assumed to be trivial for the charged
fermions but of tribimaximal type for the neutrinos in the first approximation.
It is shown that this can be implemented by allowing complex entries for the
mass matrix and spontaneous breakdown of the invariance of the
Lagrangian.Comment: 24 pages, 1 figure, minor corrections and acknowledgment added. To
appear in IJM
Is Weak Pseudo-Hermiticity Weaker than Pseudo-Hermiticity?
For a weakly pseudo-Hermitian linear operator, we give a spectral condition
that ensures its pseudo-Hermiticity. This condition is always satisfied
whenever the operator acts in a finite-dimensional Hilbert space. Hence weak
pseudo-Hermiticity and pseudo-Hermiticity are equivalent in finite-dimensions.
This equivalence extends to a much larger class of operators. Quantum systems
whose Hamiltonian is selected from among these operators correspond to
pseudo-Hermitian quantum systems possessing certain symmetries.Comment: published version, 10 page
A chiral model for bar{q}q and bar{q}bar{q}qq$ mesons
We point out that the spectrum of pseudoscalar and scalar mesons exhibits a
cuasi-degenerate chiral nonet in the energy region around 1.4 GeV whose scalar
component has a slightly inverted spectrum. Based on the empirical linear
rising of the mass of a hadron with the number of constituent quarks which
yields a mass around GeV for tetraquarks, we conjecture that this
cuasi-chiral nonet arises from the mixing of a chiral nonet composed of
tetraquarks with conventional bar{q}q states. We explore this possibility in
the framework of a chiral model assuming a tetraquark chiral nonet around 1.4
GeV with chiral symmetry realized directly. We stress that U_{A}(1)
transformations can distinguish bar{q}q from tetraquark states, although it
cannot distinguish specific dynamics in the later case. We find that the
measured spectrum is consistent with this picture. In general, pseudoscalar
states arise as mainly bar{q}q states but scalar states turn out to be strong
admixtures of bar{q}q and tetraquark states. We work out also the model
predictions for the most relevant couplings and calculate explicitly the strong
decays of the a_{0}(1450) and K_{0}^*(1430) mesons. From the comparison of some
of the predicted couplings with the experimental ones we conclude that
observable for the isovector and isospinor sectors are consistently described
within the model. The proper description of couplings in the isoscalar sectors
would require the introduction of glueball fields which is an important missing
piece in the present model.Comment: 20 pages, 3 figure
- …
