516 research outputs found
Cordycepin in Schizosaccharomyces pombe: effects on the wild type and phenotypes of mutants resistant to the drug
The adenosine analogue cordycepin (3′-deoxyadenosine) inhibits growth and causes aberrant cell morphology in the fission yeast, Schizosaccharomyces pombe. Exogenously added thiamine, the pyrimidine moiety of the thiamine molecule, and adenine alleviate its growth-disturbing effect. At concentrations that do not inhibit growth, the drug reduces mating and sporulation and causes a decrease in the mRNA level of gene ste11 and the ste11-dependent gene, mei2. The mating- and sporulation-inhibiting effect of cordycepin is overcome by adenine. A mutant disrupted for the ado1 gene encoding adenosine kinase exhibits a cordycepin-resistant and methionine-sensitive phenotype, excretes adenosine into the medium and mates and sporulates poorly in the presence of adenine. A S. pombe mutant containing a frameshift mutation at the beginning of the carboxy-terminal half of gene ufd1 (the Saccharomyces cerevisiae UFD1 homologue) is cordycepin-resistant and sterile. Strains disrupted for the ufd1 gene only form microcolonie
Applications of Abundance Data and Requirements for Cosmochemical Modeling
Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, ^3He, ^4He, and ^7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona
We present a detailed analysis of oxygen ion velocity distributions in the
extended solar corona, based on observations made with the Ultraviolet
Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at
solar minimum are known to exhibit broad line widths and unusual intensity
ratios of the O VI 1032, 1037 emission line doublet. The traditional
interpretation of these features has been that oxygen ions have a strong
temperature anisotropy, with the temperature perpendicular to the magnetic
field being much larger than the temperature parallel to the field. However,
recent work by Raouafi and Solanki suggested that it may be possible to model
the observations using an isotropic velocity distribution. In this paper we
analyze an expanded data set to show that the original interpretation of an
anisotropic distribution is the only one that is fully consistent with the
observations. It is necessary to search the full range of ion plasma parameters
to determine the values with the highest probability of agreement with the UVCS
data. The derived ion outflow speeds and perpendicular kinetic temperatures are
consistent with earlier results, and there continues to be strong evidence for
preferential ion heating and acceleration with respect to hydrogen. At
heliocentric heights above 2.1 solar radii, every UVCS data point is more
consistent with an anisotropic distribution than with an isotropic
distribution. At heights above 3 solar radii, the exact probability of isotropy
depends on the electron density chosen to simulate the line-of-sight
distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May
20, 2008
Recommended from our members
Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget
Counterstreaming electrons (CSEs) are treated as signatures of closed magnetic flux, i.e., loops connected to the Sun at both ends. However, CSEs at 1 AU likely fade as the apex of a closed loop passes beyond some distance R, owing to scattering of the sunward beam along its continually increasing path length. The remaining antisunward beam at 1 AU would then give a false signature of open flux. Subsequent opening of a loop at the Sun by interchange reconnection with an open field line would produce an electron dropout (ED) at 1 AU, as if two open field lines were reconnecting to completely disconnect from the Sun. Thus EDs can be signatures of interchange reconnection as well as the commonly attributed disconnection. We incorporate CSE fadeout into a model that matches time-varying closed flux from interplanetary coronal mass ejections (ICMEs) to the solar cycle variation in heliospheric flux. Using the observed occurrence rate of CSEs at solar maximum, the model estimates R ∼ 8–10 AU. Hence we demonstrate that EDs should be much rarer than CSEs at 1 AU, as EDs can only be detected when the juncture points of reconnected field lines lie sunward of the detector, whereas CSEs continue to be detected in the legs of all loops that have expanded beyond the detector, out to R. We also demonstrate that if closed flux added to the heliosphere by ICMEs is instead balanced by disconnection elsewhere, then ED occurrence at 1 AU would still be rare, contrary to earlier expectations
Forbush decreases and turbulence levels at CME fronts
We seek to estimate the average level of MHD turbulence near coronal mass
ejection (CME) fronts as they propagate from the Sun to the Earth. We examine
the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together
with the data from other sources for three well observed Forbush decrease
events. Each of these events are associated with frontside halo Coronal Mass
Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the
magnitude of the Forbush decrease using a simple model for the diffusion of
high energy protons through the largely closed field lines enclosing the CME as
it expands and propagates from the Sun to the Earth. We use estimates of the
cross-field diffusion coefficient derived from published results of
extensive Monte Carlo simulations of cosmic rays propagating through turbulent
magnetic fields. Our method helps constrain the ratio of energy density in the
turbulent magnetic fields to that in the mean magnetic fields near the CME
fronts. This ratio is found to be 2% for the 11 April 2001 Forbush
decrease event, 6% for the 20 November 2003 Forbush decrease event and
249% for the much more energetic event of 29 October 2003.Comment: Accepted for publication in Astronomy and Astrophysics. (Abstract
abridged) Typos correcte
Resin tapping in Pinus pinaster: effects on growth and response function to climate
Dendrocronología sobre Pinus pinaster, como la recolección de resina y los factores climáticos han afectado a su crecimiento
Turbulence Heating ObserveR – satellite mission proposal
The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’. THOR has been selected by European Space Agency (ESA) for the study phase
Evolution and environment of the eastern linear pottery culture: A case study in the site of Polgár-Piócási-Dűlő
A salvage excavation preceding a major investment project was conducted in 2006–2007, during which associated settlement features of a Middle Neolithic, Eastern Linear Pottery Culture (Alföld Linearbandkeramik – ALBK) were uncovered in an area called Piócási-dűlő on the eastern outskirts of Polgár. The features of the ALBK settlement date from two periods. The cluster of multi-functional pits yielding a rich assortment of finds, the handful of post-holes and an unusual ritual well found in the southern part of the investigated area formed one unit from the earliest phase of the Middle Neolithic (ALBK I). The settlement’s other occupation can be assigned to the late phase of the Middle Neolithic (ALBK IV). Five houseplans representing the remains of timber-framed buildings outlined a distinct area with three multi-functional pits. Associated with the above features were 8 burials.
The preliminary archaeobotanical results from Polgár–Piócási-dűlő are based on the plant material found within the sediments of 11 archaeological structures, which mainly represent pits and a welI. It can be stated that the natural environment offered habitats in which oak trees dominated in the local vegetation, forming floodplain forests and wooded steppes. They also provided food in the form of fruits and formed an optimal habitat for domestic animals. Arable fields were probably also established in the vicinity of the settlements, suggested by findings of macroscopic plant remains that represented cultivated species.
In both settlement phases lithic production activities are manifested both by the local on-site lithic production and – most importantly – by the presence of imported, mainly mesolocal, raw materials that point to contacts with deposit areas, or off-site preliminary working of obsidian and limnoquartzites. The kit of harvesting tools and a large number of grinding stones – especially in the younger phase – for the preparation of plant food suggest a major role of plant cultivation
Recommended from our members
Humans and fire: changing relations in early agricultural and built environments in the Zagros, Iran, Iraq
Fire-centred studies have recently been highlighted as powerful avenues for investigation of energy flows and relations between humans, materials, environments and other species. The aim in this paper is to evaluate this potential first by reviewing the diverse theories and methods that can be applied to investigate the ecological and social significance of anthropogenic fire, and second by applying these to new and existing data sets in archaeology. This paper examines how fire-centred approaches can inform on one of the most significant step-changes in human lifeways and inter-relations with environment and other species – the transition from mobile hunting-gathering to more sedentary agriculture in a key heartland of change, the Zagros region of Iraq and Iran, c. 12,000–8,000 BP. In the review and case studies multiple links are investigated between human fire use and environment, ecology, energy use, technology, the built environment, health, social roles and relations, cultural practices and catastrophic event
- …
