6,838 research outputs found

    Perturbation Theory for Antisymmetric Tensor Fields in Four Dimensions

    Full text link
    Perturbation theory for a class of topological field theories containing antisymmetric tensor fields is considered. These models are characterized by a supersymmetric structure which allows to establish their perturbative finiteness.Comment: 23 page

    Some Aspects of Classical and Quantum Phases

    Full text link
    We study classical and quantum phases in the adiabatic Born-Oppenheimer context. These include a classical astronomical case, the general dual description of the phases, a new "Paradox" connected to scattering Berry phase and its resolution and various elaboration of topological/geometrical/non-abelian phases.Comment: 18 pages, 4 figure

    A general formula of the effective potential in 5D SU(N) gauge theory on orbifold

    Full text link
    We show a general formula of the one loop effective potential of the 5D SU(N) gauge theory compactified on an orbifold, S1/Z2S^1/Z_2. The formula shows the case when there are fundamental, (anti-)symmetric tensor and adjoint representational bulk fields. Our calculation method is also applicable when there are bulk fields belonging to higher dimensional representations. The supersymmetric version of the effective potential with Scherk-Schwarz breaking can be obtained straightforwardly. We also show some examples of effective potentials in SU(3), SU(5) and SU(6) models with various boundary conditions, which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Possible Detection of Causality Violation in a Non-local Scalar Model

    Full text link
    We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar nonlocal theory containing a mass scale Λ\Lambda as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to Λ\Lambda) and couplings to which the observable can be used.Comment: Latex, 30 page

    Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner

    Full text link
    By using a laser and maser in tandem, it is possible to obtain laser action in the hot exhaust gases involved in heat engine operation. Such a "quantum afterburner" involves the internal quantum states of working gas atoms or molecules as well as the techniques of cavity quantum electrodynamics and is therefore in the domain of quantum thermodynamics. As an example, it is shown that Otto cycle engine performance can be improved beyond that of the "ideal" Otto heat engine.Comment: 5 pages, 3 figure

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Diffeomorphism on Horizon as an Asymptotic Isometry of Schwarzschild Black Hole

    Full text link
    It is argued that the diffeomorphism on the horizontal sphere can be regarded as a nontrivial asymptotic isometry of the Schwarzschild black hole. We propose a new boundary condition of asymptotic metrics near the horizon and show that the condition admits the local time-shift and diffeomorphism on the horizon as the asymptotic symmetry.Comment: 18 pages, no figures, corrected some typo

    Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    Get PDF
    BACKGROUND: Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. METHODOLOGY/PRINCIPAL FINDINGS: Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. CONCLUSIONS: Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered
    corecore