3,487 research outputs found

    Modelling electric vehicles use: a survey on the methods

    No full text
    In the literature electric vehicle use is modelled using of a variety of approaches in power systems, energy and environmental analyses as well as in travel demand analysis. This paper provides a systematic review of these diverse approaches using a twofold classification of electric vehicle use representation, based on the time scale and on substantive differences in the modelling techniques. For time of day analysis of demand we identify activity-based modelling (ABM) as the most attractive because it provides a framework amenable for integrated cross-sector analyses, required for the emerging integration of the transport and electricity network. However, we find that the current examples of implementation of AMB simulation tools for EV-grid interaction analyses have substantial limitations. Amongst the most critical there is the lack of realism how charging behaviour is represented

    Extracting gravity wave parameters during the September 2002 Southern Hemisphere major sudden stratospheric warming using a SANAE imaging riometer

    Get PDF
    Using absorption data measured by imaging riometer for ionospheric studies (IRIS) located at the South Africa National Antarctic Expedition (SANAE), Antarctica (72° S, 3° W), we extracted the parameters of gravity waves (GW) of periods between 40 and 50 min during late winter/spring of the year 2002, a period of the unprecedented major sudden stratospheric warming (SSW) in the Southern Hemisphere middle atmosphere. During this period, an unprecedented substantial increase of temperature by about 25–30 K throughout the stratosphere was observed. During the period of the occurrence of the major stratospheric warming, there was a reduction of both the GW horizontal phase speeds and the horizontal wavelengths at 90 km. The GW phase speeds and horizontal wavelengths were observed to reach minimum values of about 7 m s<sup>−1</sup> and 19 km, respectively, while during the quiet period the average value of the phase speed and horizontal wavelength was approximately 23 m s<sup>−1</sup> and 62 km, respectively. The observed event is discussed in terms of momentum flux and also a potential interaction of gravity waves, planetary waves and mean circulation

    Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics

    No full text
    International audienceThis paper presents comparison results of the total column ozone (TCO) data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI) onboard the EU-METSAT (European organization for the exploitation of METeorological SATellite) MetOp (Meteorological Operational satellite program) satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI) on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale) ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15 • S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2) product. The L2 product released after August (L2 O 3 version 5 (v5)) matches TCO from the other instruments better compared to version 4 (v4), which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O 3 L2 version 5 (v5) product compared with version 4 (v4), allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics. Keywords. Atmospheric composition and structure (middle atmosphere – composition and chemistry

    Streamflow disaggregation: a nonlinear deterministic approach

    No full text
    International audienceThis study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1) reconstruction of the scalar (streamflow) series in a multi-dimensional phase-space for representing the transformation dynamics; and (2) use of a local approximation (nearest neighbor) method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day) are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day). Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3) and small number of neighbors (less than 50), suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow

    Interpolating Coherent States for Heisenberg-Weyl and Single-Photon SU(1,1) Algebras

    Get PDF
    New quantal states which interpolate between the coherent states of the Heisenberg_Weyl and SU(1,1) algebras are introduced. The interpolating states are obtained as the coherent states of a closed and symmetric algebra which interpolates between the two algebras. The overcompleteness of the interpolating coherent states is established. Differential operator representations in suitable spaces of entire functions are given for the generators of the algebra. A nonsymmetric set of operators to realize the Heisenberg-Weyl algebra is provided and the relevant coherent states are studied.Comment: 13 pages nd 5 ps figure

    Dual Linearised Gravity in Arbitrary Dimensions

    Full text link
    We construct dual formulation of linearised gravity in first order tetrad formalism in arbitrary dimensions within the path integral framework following the standard duality algorithm making use of the global shift symmetry of the tetrad field. The dual partition function is in terms of the (mixed symmetric) tensor field Φ[ν1ν2...νd3]ν\Phi_{[\nu_{1}\nu_{2}...\nu_{d-3}]\nu} in {\it frame-like} formulation. We obtain in d-dimensions the dual Lagrangian in a closed form in terms of field strength of the dual frame-like field. Next by coupling a source with the (linear) Riemann tensor in d-dimensions, dual generating functional is obtained. Using this an operator mapping between (linear) Riemann tensor and Riemann tensor corresponding to the dual field is derived and we also discuss the exchange of equations of motion and Bianchi identity.Comment: 14 pages, typos corrected, Published version: Class. Quantum Grav. 22(2005)538

    Chiral Solitons in a Current Coupled Schr\"odinger Equation With Self Interaction

    Full text link
    Recently non-topological chiral soliton solutions were obtained in a derivatively coupled non-linear Schr\"odinger model in 1+1 dimensions. We extend the analysis to include a more general self-coupling potential (which includes the previous cases) and find chiral soliton solutions. Interestingly even the magnitude of the velocity is found to be fixed. Energy and U(1) charge associated with this non-topological chiral solitons are also obtained.Comment: 8 pages, no figure, to appear in Phys. Rev.

    MoTe2 : An uncompensated semimetal with extremely large magnetoresistance

    Full text link
    Transition-metal dichalcogenides (WTe2_2 and MoTe2_2) have drawn much attention, recently, because of the nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the predictions of likely type-II Weyl semimetals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe2_2 and MoTe2_2 the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe2_2, while it is yet to be clear in the case of MoTe2_2 which has an identical crystal structure of WTe2_2 at low temperatures. In this paper, we report low-energy electronic structure and Fermi surface topology of MoTe2_2 using angle-resolved photoemission spectrometry (ARPES) technique and first-principle calculations, and compare them with that of WTe2_2 to understand the mechanism of XMR. Our measurements demonstrate that MoTe2_2 is an uncompensated semimetal, contrary to WTe2_2 in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe2_2. In this context, we also discuss the applicability of the existing other conjectures on the XMR of these compounds.Comment: 9 pages, 6 fig

    Schr\"{o}dinger cat state of trapped ions in harmonic and anharmonic oscillator traps

    Full text link
    We examine the time evolution of a two level ion interacting with a light field in harmonic oscillator trap and in a trap with anharmonicities. The anharmonicities of the trap are quantified in terms of the deformation parameter τ\tau characterizing the q-analog of the harmonic oscillator trap. Initially the ion is prepared in a Schr\"{o}dinger cat state. The entanglement of the center of mass motional states and the internal degrees of freedom of the ion results in characteristic collapse and revival pattern. We calculate numerically the population inversion I(t), quasi-probabilities Q(t),Q(t), and partial mutual quantum entropy S(P), for the system as a function of time. Interestingly, small deformations of the trap enhance the contrast between population inversion collapse and revival peaks as compared to the zero deformation case. For \beta =3 and 4,(4,(% \beta determines the average number of trap quanta linked to center of mass motion) the best collapse and revival sequence is obtained for \tau =0.0047 and \tau =0.004 respectively. For large values of \tau decoherence sets in accompanied by loss of amplitude of population inversion and for \tau \sim 0.1 the collapse and revival phenomenon disappear. Each collapse or revival of population inversion is characterized by a peak in S(P) versus t plot. During the transition from collapse to revival and vice-versa we have minimum mutual entropy value that is S(P)=0. Successive revival peaks show a lowering of the local maximum point indicating a dissipative irreversible change in the ionic state. Improved definition of collapse and revival pattern as the anharminicity of the trapping potential increases is also reflected in the Quasi- probability versus t plots.Comment: Revised version, 16 pages,6 figures. Revte

    Laughlin Wave Function and One-Dimensional Free Fermions

    Full text link
    Making use of the well-known phase space reduction in the lowest Landau level(LLL), we show that the Laughlin wave function for the ν=1m\nu = {1\over m} case can be obtained exactly as a coherent state representation of an one dimensional (1D)(1D) wave function. The 1D1D system consists of mm copies of free fermions associated with each of the NN electrons, confined in a common harmonic well potential. Interestingly, the condition for this exact correspondence is found to incorporate Jain's parton picture. We argue that, this correspondence between the free fermions and quantum Hall effect is due to the mapping of the 1D1D system under consideration, to the Gaussian unitary ensemble in the random matrix theory.Comment: 7 pages, Latex , no figure
    corecore