230 research outputs found
Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies
Isotopically resolved fragments with Z<=20 have been studied with high
resolution telescopes in a test run for the FAZIA collaboration. The fragments
were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich
(124Sn) and a n-poor (112Sn) target. The fragments, detected close to the
grazing angle, are mainly emitted from the phase-space region of the
projectile. The fragment isotopic content clearly depends on the n-richness of
the target and it is a direct evidence of isospin diffusion between projectile
and target. The observed enhanced neutron richness of light fragments emitted
from the phase-space region close to the center of mass of the system can be
interpreted as an effect of isospin drift in the diluted neck region.Comment: 8 pages, 7 figure
Nuclear multifragmentation time-scale and fluctuations of largest fragment size
Distributions of the largest fragment charge, Zmax, in multifragmentation
reactions around the Fermi energy can be decomposed into a sum of a Gaussian
and a Gumbel distribution, whereas at much higher or lower energies one or the
other distribution is asymptotically dominant. We demonstrate the same generic
behavior for the largest cluster size in critical aggregation models for small
systems, in or out of equilibrium, around the critical point. By analogy with
the time-dependent irreversible aggregation model, we infer that Zmax
distributions are characteristic of the multifragmentation time-scale, which is
largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
N and Z odd-even staggering in Kr + Sn collisions at Fermi energies
The odd-even staggering of the yield of final reaction products has been
studied as a function of proton (Z) and neutron (N) numbers for the collisions
84 Kr+112 Sn and 84 Kr+124 Sn at 35 MeV/nucleon, in a wide range of elements
(up to Z ~ 20). The experimental data show that staggering effects rapidly
decrease with increasing size of the fragments. Moreover the staggering in N is
definitely larger than the one in Z. Similar general features are qualitatively
reproduced by the GEMINI code. Concerning the comparison of the two systems,
the staggering in N is in general rather similar, being slightly larger only
for the lightest fragments produced in the n-rich system. In contrast the
staggering in Z, although smaller than that in N, is sizably larger for the
n-poor system with respect to the n-rich one.Comment: 6 pages, 5 figures, Revtex forma
Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV
An analysis of experimental data from the inverse-kinematics ISODEC
experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed
signatures of a hitherto unknown reaction mechanism, intermediate between the
classical damped binary collisions and fusion-fission, but also substantially
different from what is being termed in the literature as fast fission or quasi
fission. These signatures point to a scenario where the system fuses
transiently while virtually equilibrating mass asymmetry and energy and, yet,
keeping part of the energy stored in a collective shock-imparted and, possibly,
angular momentum bearing form of excitation. Subsequently the system fissions
dynamically along the collision or shock axis with the emerging fragments
featuring a broad mass spectrum centered around symmetric fission, relative
velocities somewhat higher along the fission axis than in transverse direction,
and virtually no intrinsic spin. The class of massasymmetric fission events
shows a distinct preference for the more massive fragments to proceed along the
beam direction, a characteristic reminiscent of that reported earlier for
dynamic fragmentation of projectile-like fragments alone and pointing to the
memory of the initial mass and velocity distribution.Comment: 5 PAGES, 6 FIGURE
Coulomb chronometry to probe the decay mechanism of hot nuclei
In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment
exit channel occurs with a significant cross section. We show that these
fragments arise from two successive binary splittings of a heavy composite
system. The sequence of fragment production is determined. Strong Coulomb
proximity effects are observed in the three-fragment final state. A comparison
with Coulomb trajec-tory calculations shows that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
quasi-simultaneous above excitation energy E * = 4.00.5 MeV/A. This
transition from sequential to simultaneous break-up was interpreted as the
signature of the onset of multifragmentation for the three-fragment exit
channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical
Review
Energy measurement and fragment identification using digital signals from partially depleted Si detectors
A study of identification properties of a Si-Si DE-E telescope exploiting an
underdepleted residual-energy detector has been performed. Five different bias
voltages have been used, one corresponding to full depletion, the others
associated with a depleted layer ranging from 90% to 60% of the detector
thickness. Fragment identification has been performed using either the DE-E
technique or Pulse Shape Analysis (PSA). Both detectors are reverse mounted:
particles enter from the low field side, to enhance the PSA performance. The
achieved charge and mass resolution has been quantitatively expressed using a
Figure of Merit (FoM). Charge collection efficiency has been evaluated and the
possibility of energy calibration corrections has been considered. We find that
the DE-E performance is not affected by incomplete depletion even when only 60%
of the wafer is depleted. Isotopic separation capability improves at lower bias
voltages with respect to full depletion, though charge identification
thresholds are higher than at full depletion. Good isotopic identification via
PSA has been obtained from a partially depleted detector whose doping
uniformity is not good enough for isotopic identification at full depletion.Comment: 13 pages, 10 figures 5 tables; submitted to European Physical Journal
Influence of Neutron Enrichment on Disintegration Modes of Compound Nuclei
Cross sections, kinetic energy and angular distributions of fragments with
charge 6Z28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were
measured at the GANIL facility using the INDRA apparatus. This experiment aims
to investigate the influence of the neutron enrichment on the decay mechanism
of excited nuclei. Data are discussed in comparison with predictions of
transition state and Hauser-Feshbach models.Comment: 8 pages, 1 figure, paper presented at the First Workshop on "State of
the Art in Nuclear Cluster Physics" 13-16 May, 2008, at Strasbourg, France
(SOTANCP2008) and accepted for publication at International Journal of Modern
Physics E (Special Issue), Proceedings of SOTANCP2008 (to be published
Decay of excited nuclei produced in the 78;82Kr+40Ca reactions at 5.5 MeV/nucleon
International audienc
FAZIA applications
International audienceThe present status and the perspectives of the FAZIA project are presented. The main achievements in terms of identification thresholds and isotopic resolution are discussed, together with the adopted technical solutions. The detector is particularly well suited for the investigation of isospin transport phenomena at intermediate beam energies; perspectives to reduce the identification thresholds to cope with lower energy ISOL beams are briefly introduced. Some experimental results concerning isospin transport effects obtained with a test telescope are presented. The study of isospin transport phenomena can give information on the symmetry energy term of the nuclear equation of state by comparing the experimental results on isospin related observables with the predictions of transport codes
Study and comparison of the decay modes of the systems formed in the reactions Kr+Ca and Kr+Ca at 10 AMeV
The first results of the ISODEC experiment, performed at the INFN-Laboratori Nazionali del Sud (LNS) by using the CHIMERA detector, will be presented. The principal aims of this experiment is to study the competition between the various disintegration modes of 118,134Ba compound nuclei produced in the reactions 78Kr+40Ca and 86Kr+48Ca at 10 AMeV, exploring the isospin dependence of the decay modes of medium mass compound nuclei formed by fusion processes. The experiment complements data already obtained at 5.5 MeV/A for 78,82Kr+40Ca reactions [1], previously realized with beams delivered by GANIL facility and by using the INDRA detector. The studied systems allow to produce compound nuclei with a large variation of N/Z, at very high angular momentum, and with similar excitation energy. Indeed, the neutron enrichment of the compound nuclei is expected to play an important role on the various emission mechanisms, providing crucial information on fundamental nuclear quantities as level density, fission barrier or viscosity. First results show evident staggering effects in the Z distributions, as well as different isotopic composition and enrichment for the reaction products in the two systems. Absolute cross sections calculations of the reaction products are in progress, to provide important indication on the isospin influence on the reaction mechanism and fragments production. Such a set of data will in fact provide new constraint on sophisticated models attempting to describe statistical and/or dynamical properties [2] of excited nuclei
- …
